History of the separation axioms

Last updated
Separation axioms
in topological spaces
Kolmogorov classification
T0  (Kolmogorov)
T1  (Fréchet)
T2  (Hausdorff)
T2½ (Urysohn)
completely T2  (completely Hausdorff)
T3  (regular Hausdorff)
T3½ (Tychonoff)
T4  (normal Hausdorff)
T5  (completely normal
 Hausdorff)
T6  (perfectly normal
 Hausdorff)

The history of the separation axioms in general topology has been convoluted, with many meanings competing for the same terms and many terms competing for the same concept.

Contents

Origins

Before the current general definition of topological space, there were many definitions offered, some of which assumed (what we now think of as) some separation axioms. For example, the definition given by Felix Hausdorff in 1914 is equivalent to the modern definition plus the Hausdorff separation axiom.

The separation axioms, as a group, became important in the study of metrisability: the question of which topological spaces can be given the structure of a metric space. Metric spaces satisfy all of the separation axioms; but in fact, studying spaces that satisfy only some axioms helps build up to the notion of full metrisability.

The separation axioms that were first studied together in this way were the axioms for accessible spaces, Hausdorff spaces, regular spaces, and normal spaces. Topologists assigned these classes of spaces the names T1, T2, T3, and T4. Later this system of numbering was extended to include T0, T, T (or Tπ), T5, and T6.

But this sequence had its problems. The idea was supposed to be that every Ti space is a special kind of Tj space if i >j. But this is not necessarily true, as definitions vary. For example, a regular space (called T3) does not have to be a Hausdorff space (called T2), at least not according to the simplest definition of regular spaces.

Different definitions

Every author agreed on T0, T1, and T2. For the other axioms, however, different authors could use significantly different definitions, depending on what they were working on. These differences could develop because, if one assumes that a topological space satisfies the T1 axiom, then the various definitions are (in most cases) equivalent. Thus, if one is going to make that assumption, then one would want to use the simplest definition. But if one did not make that assumption, then the simplest definition might not be the right one for the most useful concept; in any case, it would destroy the (transitive) entailment of Ti by Tj, allowing (for example) non-Hausdorff regular spaces.

Topologists working on the metrisation problem generally did assume T1; after all, all metric spaces are T1. Thus, they used the simplest definitions for the Ti. Then, for those occasions when they did not assume T1, they used words ("regular" and "normal") for the more complicated definitions, in order to contrast them with the simpler ones. This approach was used as late as 1970 with the publication of Counterexamples in Topology by Lynn A. Steen and J. Arthur Seebach, Jr.

In contrast, general topologists, led by John L. Kelley in 1955, usually did not assume T1, so they studied the separation axioms in the greatest generality from the beginning. They used the more complicated definitions for Ti, so that they would always have a nice property relating Ti to Tj. Then, for the simpler definitions, they used words (again, "regular" and "normal"). Both conventions could be said to follow the "original" meanings; the different meanings are the same for T1 spaces, which was the original context. But the result was that different authors used the various terms in precisely opposite ways. Adding to the confusion, some literature will observe a nice distinction between an axiom and the space that satisfies the axiom, so that a T3space might need to satisfy the axioms T3 and T0 (e.g., in the Encyclopedic Dictionary of Mathematics, 2nd ed.).

Since 1970, the general topologists' terms have been growing in popularity, including in other branches of mathematics, such as analysis. But usage is still not consistent.

Completely Hausdorff, Urysohn, and T212 spaces

Steen and Seebach define a Urysohn space as "a space with a Urysohn function for any two points". Willard calls this a completely Hausdorff space. Steen & Seebach define a completely Hausdorff space or T212 space as a space in which every two points are separated by closed neighborhoods, which Willard calls a Urysohn space or T212 space.

See also

Related Research Articles

In topology and related branches of mathematics, a Hausdorff space ( HOWSS-dorf, HOWZ-dorf), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each that are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.

In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space is any completely regular space that is also a Hausdorff space; there exist completely regular spaces that are not Tychonoff.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

A subset of a topological space is called a regular open set if it is equal to the interior of its closure; expressed symbolically, if or, equivalently, if where and denote, respectively, the interior, closure and boundary of

In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.

In topology and related fields of mathematics, a topological space X is called a regular space if every closed subset C of X and a point p not contained in C admit non-overlapping open neighborhoods. Thus p and C can be separated by neighborhoods. This condition is known as Axiom T3. The term "T3 space" usually means "a regular Hausdorff space". These conditions are examples of separation axioms.

In topology and related branches of mathematics, a topological space X is a T0 space or Kolmogorov space (named after Andrey Kolmogorov) if for every pair of distinct points of X, at least one of them has a neighborhood not containing the other. In a T0 space, all points are topologically distinguishable.

In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms.

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

In topology, a discipline within mathematics, an Urysohn space, or T space, is a topological space in which any two distinct points can be separated by closed neighborhoods. A completely Hausdorff space, or functionally Hausdorff space, is a topological space in which any two distinct points can be separated by a continuous function. These conditions are separation axioms that are somewhat stronger than the more familiar Hausdorff axiom T2.

In mathematics, a cofinite subset of a set is a subset whose complement in is a finite set. In other words, contains all but finitely many elements of If the complement is not finite, but is countable, then one says the set is cocountable.

<i>Counterexamples in Topology</i> Book by Lynn Steen

Counterexamples in Topology is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

A semiregular space is a topological space whose regular open sets form a base for the topology.

In mathematics a topological space is called countably compact if every countable open cover has a finite subcover.

In mathematics, a topological space X is sequentially compact if every sequence of points in X has a convergent subsequence converging to a point in .

In mathematics, particularly topology, a Gδ space is a topological space in which closed sets are in a way ‘separated’ from their complements using only countably many open sets. A Gδ space may thus be regarded as a space satisfying a different kind of separation axiom. In fact normal Gδ spaces are referred to as perfectly normal spaces, and satisfy the strongest of separation axioms.

<span class="mw-page-title-main">Separation axiom</span> Axioms in topology defining notions of "separation"

In topology and related fields of mathematics, there are several restrictions that one often makes on the kinds of topological spaces that one wishes to consider. Some of these restrictions are given by the separation axioms. These are sometimes called Tychonoff separation axioms, after Andrey Tychonoff.

References