History of probability

Last updated

Probability has a dual aspect: on the one hand the likelihood of hypotheses given the evidence for them, and on the other hand the behavior of stochastic processes such as the throwing of dice or coins. The study of the former is historically older in, for example, the law of evidence, while the mathematical treatment of dice began with the work of Cardano, Pascal, Fermat and Christiaan Huygens between the 16th and 17th century.

Contents

Probability deals with random experiments with a known distribution, Statistics deals wirh inference from the data about the unknown distribution.

Etymology

Probable and probability and their cognates in other modern languages derive from medieval learned Latin probabilis, deriving from Cicero and generally applied to an opinion to mean plausible or generally approved. [1] The form probability is from Old French probabilite (14 c.) and directly from Latin probabilitatem (nominative probabilitas) "credibility, probability," from probabilis (see probable). The mathematical sense of the term is from 1718. In the 18th century, the term chance was also used in the mathematical sense of "probability" (and probability theory was called Doctrine of Chances). This word is ultimately from Latin cadentia, i.e. "a fall, case". The English adjective likely is of Germanic origin, most likely from Old Norse likligr (Old English had geliclic with the same sense), originally meaning "having the appearance of being strong or able" "having the similar appearance or qualities", with a meaning of "probably" recorded mid-15c. The derived noun likelihood had a meaning of "similarity, resemblance" but took on a meaning of "probability" from the mid 15th century. The meaning "something likely to be true" is from 1570s.

Origins

Ancient and medieval law of evidence developed a grading of degrees of proof, credibility, presumptions and half-proof to deal with the uncertainties of evidence in court. [2]

In Renaissance times, betting was discussed in terms of odds such as "ten to one" and maritime insurance premiums were estimated based on intuitive risks, but there was no theory on how to calculate such odds or premiums. [2] :278–288

The mathematical methods of probability arose in the investigations first of Gerolamo Cardano in the 1560s (not published until 100 years later), and then in the correspondence Pierre de Fermat and Blaise Pascal (1654) on such questions as the fair division of the stake in an interrupted game of chance. Christiaan Huygens (1657) gave a comprehensive treatment of the subject. [3] [2] :296–316

From Games, Gods and Gambling ISBN   978-0-85264-171-2 by F. N. David:

In ancient times there were games played using astragali, or Talus bone. The Pottery of ancient Greece was evidence to show that there was a circle drawn on the floor and the astragali were tossed into this circle, much like playing marbles. In Egypt, excavators of tombs found a game they called "Hounds and Jackals", which closely resembles the modern game "Snakes and Ladders". It seems that this is the early stages of the creation of dice.
The first dice game mentioned in literature of the Christian era was called Hazard. Played with 2 or 3 dice. Thought to have been brought to Europe by the knights returning from the Crusades.
Dante Alighieri (1265-1321) mentions this game. A commentor of Dante puts further thought into this game: the thought was that with three dice, the lowest number you can get is three, an ace for every die. Achieving a four can be done with three dice by having a two on one die and aces on the other two dice. [2] :293–4
Cardano also thought about the sum of three dice. At face value there are the same number of combinations that sum to 9 as those that sum to 10. For a 9:(621) (531) (522) (441) (432) (333) and for 10: (631) (622) (541) (532) (442) (433). However, there are more ways of obtaining some of these combinations than others. For example, if we consider the order of results there are six ways to obtain (621): (1,2,6), (1,6,2), (2,1,6), (2,6,1), (6,1,2), (6,2,1), but there is only one way to obtain (333), where the first, second and third dice all roll 3. There are a total of 27 permutations that sum to 10 but only 25 that sum to 9. From this, Cardano found that the probability of throwing a 9 is less than that of throwing a 10. He also demonstrated the efficacy of defining odds as the ratio of favourable to unfavourable outcomes (which implies that the probability of an event is given by the ratio of favourable outcomes to the total number of possible outcomes [4] [2] :296–300).
In addition, Galileo wrote about die-throwing sometime between 1613 and 1623. Unknowingly considering what is essentially the same problem as Cardano's, Galileo had said that certain numbers have the ability to be thrown because there are more ways to create that number. [2] :302

Eighteenth century

Jacob Bernoulli's Ars Conjectandi (posthumous, 1713) and Abraham De Moivre's The Doctrine of Chances (1718) put probability on a sound mathematical footing, showing how to calculate a wide range of complex probabilities. Bernoulli proved a version of the fundamental law of large numbers, which states that in a large number of trials, the average of the outcomes is likely to be very close to the expected value - for example, in 1000 throws of a fair coin, it is likely that there are close to 500 heads (and the larger the number of throws, the closer to half-and-half the proportion is likely to be).

Nineteenth century

The power of probabilistic methods in dealing with uncertainty was shown by Gauss's determination of the orbit of Ceres from a few observations. The theory of errors used the method of least squares to correct error-prone observations, especially in astronomy, based on the assumption of a normal distribution of errors to determine the most likely true value. In 1812, Laplace issued his Théorie analytique des probabilités in which he consolidated and laid down many fundamental results in probability and statistics such as the moment-generating function, method of least squares, inductive probability, and hypothesis testing.

Towards the end of the nineteenth century, a major success of explanation in terms of probabilities was the Statistical mechanics of Ludwig Boltzmann and J. Willard Gibbs which explained properties of gases such as temperature in terms of the random motions of large numbers of particles.

The field of the history of probability itself was established by Isaac Todhunter's monumental A History of the Mathematical Theory of Probability from the Time of Pascal to that of Laplace (1865).

Twentieth century

Probability and statistics became closely connected through the work on hypothesis testing of R. A. Fisher and Jerzy Neyman, which is now widely applied in biological and psychological experiments and in clinical trials of drugs, as well as in economics and elsewhere. A hypothesis, for example that a drug is usually effective, gives rise to a probability distribution that would be observed if the hypothesis is true. If observations approximately agree with the hypothesis, it is confirmed, if not, the hypothesis is rejected. [5]

The theory of stochastic processes broadened into such areas as Markov processes and Brownian motion, the random movement of tiny particles suspended in a fluid. That provided a model for the study of random fluctuations in stock markets, leading to the use of sophisticated probability models in mathematical finance, including such successes as the widely used Black–Scholes formula for the valuation of options. [6]

The twentieth century also saw long-running disputes on the interpretations of probability. In the mid-century frequentism was dominant, holding that probability means long-run relative frequency in a large number of trials. At the end of the century there was some revival of the Bayesian view, according to which the fundamental notion of probability is how well a proposition is supported by the evidence for it.

The mathematical treatment of probabilities, especially when there are infinitely many possible outcomes, was facilitated by Kolmogorov's axioms (1933).

Notes

  1. J. Franklin, The Science of Conjecture: Evidence and Probability Before Pascal, 113, 126.
  2. 1 2 3 4 5 6 Franklin, James (2001). The Science of Conjecture: Evidence and Probability Before Pascal. Baltimore: Johns Hopkins University Press. p. 5-33. ISBN   0-8018-6569-7.
  3. Hacking, Emergence of Probability[ page needed ]
  4. Some laws and problems in classical probability and how Cardano anticipated them Gorrochum, P. Chance magazine 2012
  5. Salsburg, The Lady Tasting Tea.
  6. Bernstein, Against the Gods, ch. 18.

Related Research Articles

<span class="mw-page-title-main">Expected value</span> Average value of a random variable

In probability theory, the expected value is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a large number of independently selected outcomes of a random variable. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would "expect" to get in reality.

<span class="mw-page-title-main">Frequentist probability</span> Interpretation of probability

Frequentist probability or frequentism is an interpretation of probability; it defines an event's probability as the limit of its relative frequency in many trials. Probabilities can be found by a repeatable objective process. The continued use of frequentist methods in scientific inference, however, has been called into question.

<span class="mw-page-title-main">Probability</span> Branch of mathematics concerning chance and uncertainty

Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of the event and 1 indicates certainty. The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes are both equally probable; the probability of 'heads' equals the probability of 'tails'; and since no other outcomes are possible, the probability of either 'heads' or 'tails' is 1/2.

<span class="mw-page-title-main">Sample space</span> Set of all possible outcomes or results of a statistical trial or experiment

In probability theory, the sample space of an experiment or random trial is the set of all possible outcomes or results of that experiment. A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, are listed as elements in the set. It is common to refer to a sample space by the labels S, Ω, or U. The elements of a sample space may be numbers, words, letters, or symbols. They can also be finite, countably infinite, or uncountably infinite.

The word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical, tendency of something to occur, or is it a measure of how strongly one believes it will occur, or does it draw on both these elements? In answering such questions, mathematicians interpret the probability values of probability theory.

<span class="mw-page-title-main">Probability theory</span> Branch of mathematics concerning probability

Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event.

<span class="mw-page-title-main">Statistics</span> Study of the collection, analysis, interpretation, and presentation of data

Statistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments.

A statistical hypothesis test is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis. Hypothesis testing allows us to make probabilistic statements about population parameters.

<span class="mw-page-title-main">Probability space</span> Mathematical concept

In probability theory, a probability space or a probability triple is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die.

<span class="mw-page-title-main">Probability measure</span> Measure of total value one, generalizing probability distributions

In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as countable additivity. The difference between a probability measure and the more general notion of measure is that a probability measure must assign value 1 to the entire probability space.

In probability theory, odds provide a measure of the likelihood of a particular outcome. They are calculated as the ratio of the number of events that produce that outcome to the number that do not. Odds are commonly used in gambling and statistics.

In scientific research, the null hypothesis is the claim that no relationship exists between two sets of data or variables being analyzed. The null hypothesis is that any experimentally observed difference is due to chance alone, and an underlying causative relationship does not exist, hence the term "null." In addition to the null hypothesis, an alternative hypothesis is also developed, which claims that a relationship does exist between two variables.

The classical definition or interpretation of probability is identified with the works of Jacob Bernoulli and Pierre-Simon Laplace. As stated in Laplace's Théorie analytique des probabilités,

The problem of points, also called the problem of division of the stakes, is a classical problem in probability theory. One of the famous problems that motivated the beginnings of modern probability theory in the 17th century, it led Blaise Pascal to the first explicit reasoning about what today is known as an expected value.

Statistics, in the modern sense of the word, began evolving in the 18th century in response to the novel needs of industrializing sovereign states.

<i>Ars Conjectandi</i> 1713 book on probability and combinatorics by Jacob Bernoulli

Ars Conjectandi is a book on combinatorics and mathematical probability written by Jacob Bernoulli and published in 1713, eight years after his death, by his nephew, Niklaus Bernoulli. The seminal work consolidated, apart from many combinatorial topics, many central ideas in probability theory, such as the very first version of the law of large numbers: indeed, it is widely regarded as the founding work of that subject. It also addressed problems that today are classified in the twelvefold way and added to the subjects; consequently, it has been dubbed an important historical landmark in not only probability but all combinatorics by a plethora of mathematical historians. The importance of this early work had a large impact on both contemporary and later mathematicians; for example, Abraham de Moivre.

<span class="mw-page-title-main">Randomness</span> Apparent lack of pattern or predictability in events

In common usage, randomness is the apparent or actual lack of definite pattern or predictability in information. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual random events are, by definition, unpredictable, but if the probability distribution is known, the frequency of different outcomes over repeated events is predictable. For example, when throwing two dice, the outcome of any particular roll is unpredictable, but a sum of 7 will tend to occur twice as often as 4. In this view, randomness is not haphazardness; it is a measure of uncertainty of an outcome. Randomness applies to concepts of chance, probability, and information entropy.

The following is a timeline of probability and statistics.

<span class="mw-page-title-main">Hypothesis</span> Proposed explanation for an observation, phenomenon, or scientific problem

A hypothesis is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with the available scientific theories. Even though the words "hypothesis" and "theory" are often used interchangeably, a scientific hypothesis is not the same as a scientific theory. A working hypothesis is a provisionally accepted hypothesis proposed for further research in a process beginning with an educated guess or thought.

<span class="mw-page-title-main">History of randomness</span> Aspect of history

In ancient history, the concepts of chance and randomness were intertwined with that of fate. Many ancient peoples threw dice to determine fate, and this later evolved into games of chance. At the same time, most ancient cultures used various methods of divination to attempt to circumvent randomness and fate. Beyond religion and games of chance, randomness has been attested for sortition since at least ancient Athenian democracy in the form of a kleroterion.

References