The historiography of science or the historiography of the history of science is the study of the history and methodology of the sub-discipline of history, known as the history of science, including its disciplinary aspects and practices (methods, theories, schools) and the study of its own historical development ("History of History of Science", i.e., the history of the discipline called History of Science).
Historiographical debates regarding the proper method for the study of the history of science are sometimes difficult to demarcate from historical controversies regarding the course of science. Early controversies of the latter kind are considered by some to be the inception of the sub-discipline.
Histories of science were originally written by practicing and retired scientists, [1] a notable early example being William Whewell's History of the Inductive Sciences (1837). Biographies of natural philosophers (early scientists) were also popular in the nineteenth century, helping to create Isaac Newton as a scientific genius and national hero in Great Britain. [2] H.G. Wells began a trend for histories of science on the grand scale, a kind of epic of civilisation and progress, with his Outline of History (1919/1920). Popular accounts of science's past were often linked to speculations about its future, [3] with science fiction authors such as Isaac Asimov and L. Sprague de Camp dabbling in the two.
In the early 1930s, a paper given by the Soviet historian Boris Hessen prompted many historians to look at the ways in which scientific practices were allied with the needs and motivations of their context.[ citation needed ] Hessen's work focused on socio-political factors in what science is done, and how.
This method of doing the history of science that became known as externalism looks at the manner in which science and scientists are affected, and guided by, their context and the world in which they exist. It is an approach which eschews the notion that the history of science is the development of pure thought over time, one idea leading to another in a contextual bubble which could exist at any place, at any time, if only given the right geniuses.[ citation needed ]
The method of doing history of science which preceded externalism, became known as internalism . Internalist histories of science often focus on the rational reconstruction of scientific ideas and consider the development of these ideas wholly within the scientific world. Although internalist histories of modern science tend to emphasize the norms of modern science, internalist histories can also consider the different systems of thought underlying the development of Babylonian astronomy or Medieval impetus theory.[ citation needed ]
In practice, the line between internalism and externalism can be incredibly fuzzy.[ citation needed ] Few historians then, or now, would insist that either of these approaches in their extremes paint a wholly complete picture, nor would it necessarily be possible to practice one fully over the other. However, at their heart they contain a basic question about the nature of science: what is the relationship between the producers and consumers of scientific knowledge? The answer to this question must, in some form, inform the method in which the history of science and technology is conducted; conversely, how the history of science and technology is conducted, and what it concludes, can inform the answer to the question. The question itself contains an entire host of philosophical questions: what is the nature of scientific truth? What does objectivity mean in a scientific context? How does change in scientific theories occur?[ citation needed ]
The historian/sociologist of science Robert K. Merton produced many works following Hessen's thesis, which can be seen as reactions to and refinements of Hessen's argument.[ citation needed ] In his work on science, technology, and society in the 17th-century England, Merton sought to introduce an additional category — Puritanism — to explain the growth of science in this period. Merton split Hessen's category of economics into smaller subcategories of influence, including transportation, mining, and military technique. Merton also tried to develop empirical, quantitative approaches to showing the influence of external factors on science.[ citation needed ]
Even with his emphasis on external factors, Merton differed from Hessen in his interpretation: Merton maintained that while researchers may be inspired and interested by problems which were suggested by extra-scientific factors, ultimately the researcher's interests were driven by "the internal history of the science in question".[ citation needed ] Merton attempted to delineate externalism and internalism along disciplinary boundaries, with context studied by the sociologist of science, and content by the historian.
This section needs expansion. You can help by adding to it. (June 2008) |
A major subject of concern and controversy in the philosophy of science has been the nature of paradigm shift or theory change in science. Karl Popper argued that scientific knowledge is progressive and cumulative; Thomas Kuhn, that scientific knowledge moves through "paradigm shifts" and is not necessarily progressive; and Paul Feyerabend, that scientific knowledge is not cumulative or progressive and that there can be no demarcation in terms of method between science and any other form of investigation. [4]
In 1935, Ludwik Fleck, a Polish medical microbiologist published Genesis and Development of a Scientific Fact . Fleck's book focused on the epistemological and linguistic factors that affect scientific discovery, innovation and progress or development.
It used a case study in the field of medicine (of the development of the disease concept of Syphilis) to present a thesis about the social nature of knowledge, and in particular science and scientific "thought styles" (Denkstil), which are the epistemological, conceptual and linguistic styles of scientific (but also non-scientific) 'thought collectives' (Denkkollektiv). Fleck's book suggests that epistemologically, there is nothing stable or realistically true or false about any scientific fact. A fact has a "genesis" which is grounded in certain theoretic grounds and many times other obscure and fuzzy notions, and it "develops" as it is subject to dispute and additional research by other scientists.
Fleck's monograph was published at almost the same time as Karl Popper's Logik der Forschung but unlike Popper's work, the book received no review notice in Isis. However, Thomas S. Kuhn acknowledged the influence it had upon the Structure of Scientific Revolutions .[ citation needed ] Kuhn also wrote the foreword to Fleck's English translation.
Popper coined the term "critical rationalism" to describe his philosophy. [5] He distinguished between verification and falsifiability and said that a theory should be considered scientific if, and only if, it is falsifiable. Popper sought to explain the apparent progress of scientific knowledge in All Life is Problem Solving. Popper suggested that our understanding of the universe seems to improve over time because of an evolutionary process. He proposed that the process of "error elimination" in the field of science is like that of natural selection for biological evolution, whereby theories that better survive the process of refutation are not necessarily more "true" but more "fit" or applicable to the problem situation at hand. Popper suggested that the evolution of theories through the scientific method could reflect a certain type of progress: toward more and more interesting problems.
Popper helped to establish the philosophy of science as an autonomous discipline within philosophy, through his own prolific and influential works, and also through his influence on his own contemporaries and students.
The mid 20th century saw a series of studies investigating the role of science in a social context. The sociology of science focused on the ways in which scientists work, looking closely at the ways in which they "produce" and "construct" scientific knowledge.
Thomas Kuhn's The Structure of Scientific Revolutions (1962) is considered particularly influential. It opened the study of science to new disciplines by suggesting that the evolution of science was in part sociologically determined and that positivism did not explain the actual interactions and strategies of the human participants in science.
As Kuhn put it, the history of science may be seen in more nuanced terms, such as that of competing paradigms or conceptual systems in a wider matrix that includes intellectual, cultural, economic and political themes outside of science. "Partly by selection and partly by distortion, the scientists of earlier ages are implicitly presented as having worked upon the same set of fixed problems and in accordance with the same set of fixed canons that the most recent revolution in scientific theory and method made seem scientific." [6]
In 1965, Gerd Buchdahl wrote "A Revolution in Historiography of Science", referring to the studies of Thomas Kuhn and Joseph Agassi. [7] He suggested that these two writers had inaugurated the sub-discipline by distinguishing clearly between the history and the historiography of science, as they argued that historiographical views greatly influence the writing of the history of science.
Further studies, such as Jerome Ravetz's Scientific Knowledge and its Social Problems (1971) referred to the role of the scientific community, as a social construct, in accepting or rejecting (objective) scientific knowledge. [8]
Since the 1960s, a common trend in science studies (the study of the sociology and history of science) has been to emphasize the "human component" of scientific knowledge, and to de-emphasize the view that scientific data are self-evident, value-free, and context-free. [9] The field of Science and Technology Studies, an area that overlaps and often informs historical studies of science, focuses on the social context of science in both contemporary and historical periods.
Corresponding with the rise of the environmentalism movement and a general loss of optimism of the power of science and technology unfettered to solve the problems of the world, this new history encouraged many critics to pronounce the preeminence of science to be overthrown.[ citation needed ]
The Science wars of the 1990s were about the influence of especially French philosophers, which denied the objectivity of science in general or seemed to do so.[ citation needed ] They described as well differences between the idealized model of a pure science and the actual scientific practice; while scientism, a revival of the positivism approach, saw in precise measurement and rigorous calculation the basis for finally settling enduring metaphysical and moral controversies. [10] [11]
This section needs expansion. You can help by adding to it. (June 2008) |
The discipline today encompasses a wide variety of fields of academic study, ranging from the traditional ones of history, sociology, and philosophy, and a variety of others such as law, architecture, and literature.[ citation needed ] There is a tendency towards integrating with global history, as well as employing new methodological concepts such as cross-cultural exchange.[ citation needed ] Historians of science also closely work with scholars from related disciplines such as the history of medicine and science and technology studies.[ citation needed ]
Some critical theorists later argued that their postmodern deconstructions had at times been counter-productive, and had provided intellectual ammunition for reactionary interests.[ citation needed ] Bruno Latour noted that "dangerous extremists are using the very same argument of social construction to destroy hard-won evidence that could save our lives. Was I wrong to participate in the invention of this field known as science studies? Is it enough to say that we did not really mean what we meant?" [12]
Eurocentrism in scientific history are historical accounts written about the development of modern science that attribute all scholarly, technological, and philosophical gains to Europe and marginalize outside contributions. [13] Until Joseph Needham's book series Science and Civilisation in China began in 1954, many historians would write about modern science solely as a European achievement with no significant contributions from civilizations other than the Greeks. [14] Recent historical writings have argued that there was significant influence and contribution from Egyptian, Mesopotamian, Arabic, Indian, and Chinese astronomy and mathematics. [15] The employment of notions of cross-cultural exchange in the study of history of science helps in putting the discipline on the path towards being a non-Eurocentric and non-linear field of study.[ citation needed ]
In the philosophy of science, protoscience is a research field that has the characteristics of an undeveloped science that may ultimately develop into an established science. Philosophers use protoscience to understand the history of science and distinguish protoscience from science and pseudoscience. The word roots proto- + science indicate first science.
Social science is one of the branches of science, devoted to the study of societies and the relationships among individuals within those societies. The term was formerly used to refer to the field of sociology, the original "science of society", established in the 18th century. In addition to sociology, it now encompasses a wide array of academic disciplines, including anthropology, archaeology, economics, geography, linguistics, management, communication studies, psychology, culturology and political science.
Philosophy of science is the branch of philosophy concerned with the foundations, methods, and implications of science. Amongst its central questions are the difference between science and non-science, the reliability of scientific theories, and the ultimate purpose and meaning of science as a human endeavour. Philosophy of science focuses on metaphysical, epistemic and semantic aspects of scientific practice, and overlaps with metaphysics, ontology, logic, and epistemology, for example, when it explores the relationship between science and the concept of truth. Philosophy of science is both a theoretical and empirical discipline, relying on philosophical theorising as well as meta-studies of scientific practice. Ethical issues such as bioethics and scientific misconduct are often considered ethics or science studies rather than the philosophy of science.
In science and philosophy, a paradigm is a distinct set of concepts or thought patterns, including theories, research methods, postulates, and standards for what constitute legitimate contributions to a field. The word paradigm is Greek in origin, meaning "pattern".
The Structure of Scientific Revolutions is a book about the history of science by the philosopher Thomas S. Kuhn. Its publication was a landmark event in the history, philosophy, and sociology of science. Kuhn challenged the then prevailing view of progress in science in which scientific progress was viewed as "development-by-accumulation" of accepted facts and theories. Kuhn argued for an episodic model in which periods of conceptual continuity and cumulative progress, referred to as periods of "normal science", were interrupted by periods of revolutionary science. The discovery of "anomalies" during revolutions in science leads to new paradigms. New paradigms then ask new questions of old data, move beyond the mere "puzzle-solving" of the previous paradigm, alter the rules of the game and change the "map" directing new research.
The following outline is provided as an overview of and topical guide to the scientific method:
In philosophy of science and epistemology, the demarcation problem is the question of how to distinguish between science and non-science. It also examines the boundaries between science, pseudoscience and other products of human activity, like art and literature and beliefs. The debate continues after more than two millennia of dialogue among philosophers of science and scientists in various fields. The debate has consequences for what can be termed "scientific" in topics such as education and public policy.
The sociology of scientific knowledge (SSK) is the study of science as a social activity, especially dealing with "the social conditions and effects of science, and with the social structures and processes of scientific activity." The sociology of scientific ignorance (SSI) is complementary to the sociology of scientific knowledge. For comparison, the sociology of knowledge studies the impact of human knowledge and the prevailing ideas on societies and relations between knowledge and the social context within which it arises.
David Bloor is a British sociologist. He is a professor in, and a former director of, the Science Studies Unit at the University of Edinburgh. He is a key figure in the Edinburgh school and played a major role in the development of the field of science and technology studies. He is best known for advocating the strong programme in the sociology of scientific knowledge, most notably in his book Knowledge and Social Imagery.
Postpositivism or postempiricism is a metatheoretical stance that critiques and amends positivism and has impacted theories and practices across philosophy, social sciences, and various models of scientific inquiry. While positivists emphasize independence between the researcher and the researched person, postpositivists argue that theories, hypotheses, background knowledge and values of the researcher can influence what is observed. Postpositivists pursue objectivity by recognizing the possible effects of biases. While positivists emphasize quantitative methods, postpositivists consider both quantitative and qualitative methods to be valid approaches.
Philosophy in this sense means how social science integrates with other related scientific disciplines, which implies a rigorous, systematic endeavor to build and organize knowledge relevant to the interaction between individual people and their wider social involvement.
The history and philosophy of science (HPS) is an academic discipline that encompasses the philosophy of science and the history of science. Although many scholars in the field are trained primarily as either historians or as philosophers, there are degree-granting departments of HPS at several prominent universities. Though philosophy of science and history of science are their own disciplines, history and philosophy of science is a discipline in its own right.
Positivism is a philosophical school that holds that all genuine knowledge is either true by definition or positive –meaning a posteriori facts derived by reason and logic from sensory experience. Other ways of knowing, such as intuition, introspection, or religious faith, are rejected or considered meaningless.
Rhetoric of science is a body of scholarly literature exploring the notion that the practice of science is a rhetorical activity. It emerged after a number of similarly oriented topics of research and discussion during the late 20th century, including the sociology of scientific knowledge, history of science, and philosophy of science, but it is practiced most typically by rhetoricians in academic departments of English, speech, and communication.
In science, objectivity refers to attempts to do higher quality research by eliminating personal biases, emotions, and false beliefs, while focusing mainly on proven facts and evidence. It is often linked to observation as part of the scientific method. It is thus intimately related to the aim of testability and reproducibility. To be considered objective, the results of measurement must be communicated from person to person, and then demonstrated for third parties, as an advance in a collective understanding of the world. Such demonstrable knowledge has ordinarily conferred demonstrable powers of prediction or technology.
The history of the social sciences has origin in the common stock of Western philosophy and shares various precursors, but began most intentionally in the early 18th century with the positivist philosophy of science. Since the mid-20th century, the term "social science" has come to refer more generally, not just to sociology, but to all those disciplines which analyze society and culture; from anthropology to psychology to media studies.
Michael Joseph Mulkay is a retired British sociologist of science.
Thomas Samuel Kuhn was an American historian and philosopher of science whose 1962 book The Structure of Scientific Revolutions was influential in both academic and popular circles, introducing the term paradigm shift, which has since become an English-language idiom.
A thought collective, a term originated in German as "Denkkollektiv" by the Polish and Israeli physician Ludwik Fleck, is a community of researchers who interact collectively towards the production or elaboration of knowledge using a shared framework of cultural customs and knowledge acquisition. In Fleck (1935) Fleck identified the scientific production of knowledge as primarily a social process that hinges upon prior discoveries and practices in a way that constrains and preconditions new ideas and concepts. He termed this shared collection of preexisting knowledge a "Denkstil" or thought style and formulated a comparative epistemology of science using these two ideas.
The Kuhn-Popper debate was a debate surrounding research methods and the advancement of scientific knowledge. In 1965, at the University of London's International Colloquium in the Philosophy of Science, Thomas Kuhn and Karl Popper engaged in a debate that circled around three main areas of disagreement. These areas included the concept of a scientific method, the specific behaviors and practices of scientists, and the differentiation between scientific knowledge and other forms of knowledge.
...scientism is a revival of the nineteenth-century positivist faith that a reified "science" has discovered (or is about to discover) all the important truths about human life. Precise measurement and rigorous calculation, in this view, are the basis for finally settling enduring metaphysical and moral controversies—explaining consciousness and choice, replacing ambiguity with certainty.