Paradigm shift

Last updated

A paradigm shift is a fundamental change in the basic concepts and experimental practices of a scientific discipline. It is a concept in the philosophy of science that was introduced and brought into the common lexicon by the American physicist and philosopher Thomas Kuhn. Even though Kuhn restricted the use of the term to the natural sciences, the concept of a paradigm shift has also been used in numerous non-scientific contexts to describe a profound change in a fundamental model or perception of events.

Contents

Kuhn presented his notion of a paradigm shift in his influential book The Structure of Scientific Revolutions (1962).

Kuhn contrasts paradigm shifts, which characterize a Scientific Revolution, to the activity of normal science, which he describes as scientific work done within a prevailing framework or paradigm. Paradigm shifts arise when the dominant paradigm under which normal science operates is rendered incompatible with new phenomena, facilitating the adoption of a new theory or paradigm. [1]

As one commentator summarizes:

Kuhn acknowledges having used the term "paradigm" in two different meanings. In the first one, "paradigm" designates what the members of a certain scientific community have in common, that is to say, the whole of techniques, patents and values shared by the members of the community. In the second sense, the paradigm is a single element of a whole, say for instance Newton's Principia, which, acting as a common model or an example... stands for the explicit rules and thus defines a coherent tradition of investigation. Thus the question is for Kuhn to investigate by means of the paradigm what makes possible the constitution of what he calls "normal science". That is to say, the science which can decide if a certain problem will be considered scientific or not. Normal science does not mean at all a science guided by a coherent system of rules, on the contrary, the rules can be derived from the paradigms, but the paradigms can guide the investigation also in the absence of rules. This is precisely the second meaning of the term "paradigm", which Kuhn considered the most new and profound, though it is in truth the oldest. [2]

History

The nature of scientific revolutions has been studied by modern philosophy since Immanuel Kant used the phrase in the preface to the second edition of his Critique of Pure Reason (1787). Kant used the phrase "revolution of the way of thinking" (Revolution der Denkart) to refer to Greek mathematics and Newtonian physics. In the 20th century, new developments in the basic concepts of mathematics, physics, and biology revitalized interest in the question among scholars.

Original usage

Kuhn used the duck-rabbit optical illusion, made famous by Wittgenstein, to demonstrate the way in which a paradigm shift could cause one to see the same information in an entirely different way. Duck-Rabbit illusion.jpg
Kuhn used the duck-rabbit optical illusion, made famous by Wittgenstein, to demonstrate the way in which a paradigm shift could cause one to see the same information in an entirely different way.

In his 1962 book The Structure of Scientific Revolutions , Kuhn explains the development of paradigm shifts in science into four stages:

Features

Paradigm shifts and progress

A common misinterpretation of paradigms is the belief that the discovery of paradigm shifts and the dynamic nature of science (with its many opportunities for subjective judgments by scientists) are a case for relativism: [10] the view that all kinds of belief systems are equal. Kuhn vehemently denies this interpretation [11] and states that when a scientific paradigm is replaced by a new one, albeit through a complex social process, the new one is always better, not just different.

Incommensurability

These claims of relativism are, however, tied to another claim that Kuhn does at least somewhat endorse: that the language and theories of different paradigms cannot be translated into one another or rationally evaluated against one another—that they are incommensurable. This gave rise to much talk of different peoples and cultures having radically different worldviews or conceptual schemes—so different that whether or not one was better, they could not be understood by one another. However, the philosopher Donald Davidson published the highly regarded essay "On the Very Idea of a Conceptual Scheme" [12] in 1974 arguing that the notion that any languages or theories could be incommensurable with one another was itself incoherent. If this is correct, Kuhn's claims must be taken in a weaker sense than they often are. Furthermore, the hold of the Kuhnian analysis on social science has long been tenuous, with the wide application of multi-paradigmatic approaches in order to understand complex human behaviour. [13]

Gradualism vs. sudden change

Paradigm shifts tend to be most dramatic in sciences that appear to be stable and mature, as in physics at the end of the 19th century. At that time, physics seemed to be a discipline filling in the last few details of a largely worked-out system.

In The Structure of Scientific Revolutions, Kuhn wrote, "Successive transition from one paradigm to another via revolution is the usual developmental pattern of mature science" (p. 12). Kuhn's idea was itself revolutionary in its time as it caused a major change in the way that academics talk about science. Thus, it could be argued that it caused or was itself part of a "paradigm shift" in the history and sociology of science. However, Kuhn would not recognise such a paradigm shift. In the social sciences, people can still use earlier ideas to discuss the history of science.

Philosophers and historians of science, including Kuhn himself, ultimately accepted a modified version of Kuhn's model, which synthesizes his original view with the gradualist model that preceded it. [14]

Examples

Natural sciences

Some of the "classical cases" of Kuhnian paradigm shifts in science are:

Social sciences

In Kuhn's view, the existence of a single reigning paradigm is characteristic of the natural sciences, while philosophy and much of social science were characterized by a "tradition of claims, counterclaims, and debates over fundamentals." [26] Others have applied Kuhn's concept of paradigm shift to the social sciences.

Applied sciences

More recently, paradigm shifts are also recognisable in applied sciences:

Other uses

The term "paradigm shift" has found uses in other contexts, representing the notion of a major change in a certain thought pattern—a radical change in personal beliefs, complex systems or organizations, replacing the former way of thinking or organizing with a radically different way of thinking or organizing:

Criticism

In a 2015 retrospective on Kuhn, [40] the philosopher Martin Cohen describes the notion of the paradigm shift as a kind of intellectual virus – spreading from hard science to social science and on to the arts and even everyday political rhetoric today. Cohen claims that Kuhn had only a very hazy idea of what it might mean and, in line with the Austrian philosopher of science Paul Feyerabend, accuses Kuhn of retreating from the more radical implications of his theory, which are that scientific facts are never really more than opinions whose popularity is transitory and far from conclusive. Cohen says scientific knowledge is less certain than it is usually portrayed, and that science and knowledge generally is not the 'very sensible and reassuringly solid sort of affair' that Kuhn describes, in which progress involves periodic paradigm shifts in which much of the old certainties are abandoned in order to open up new approaches to understanding that scientists would never have considered valid before. He argues that information cascades can distort rational, scientific debate. He has focused on health issues, including the example of highly mediatised 'pandemic' alarms, and why they have turned out eventually to be little more than scares. [41]

See also

Related Research Articles

<span class="mw-page-title-main">Philosophy of science</span>

Philosophy of science is the branch of philosophy concerned with the foundations, methods, and implications of science. Amongst its central questions are the difference between science and non-science, the reliability of scientific theories, and the ultimate purpose and meaning of science as a human endeavour. Philosophy of science focuses on metaphysical, epistemic and semantic aspects of scientific practice, and overlaps with metaphysics, ontology, logic, and epistemology, for example, when it explores the relationship between science and the concept of truth. Philosophy of science is both a theoretical and empirical discipline, relying on philosophical theorising as well as meta-studies of scientific practice. Ethical issues such as bioethics and scientific misconduct are often considered ethics or science studies rather than the philosophy of science.

Normal science, identified and elaborated on by Thomas Samuel Kuhn in The Structure of Scientific Revolutions, is the regular work of scientists theorizing, observing, and experimenting within a settled paradigm or explanatory framework. Regarding science as puzzle-solving, Kuhn explained normal science as slowly accumulating detail in accord with established broad theory, without questioning or challenging the underlying assumptions of that theory.

In science and philosophy, a paradigm is a distinct set of concepts or thought patterns, including theories, research methods, postulates, and standards for what constitute legitimate contributions to a field. The word paradigm is Greek in origin, meaning "pattern".

<i>The Structure of Scientific Revolutions</i> 1962 book by Thomas S. Kuhn

The Structure of Scientific Revolutions is a book about the history of science by the philosopher Thomas S. Kuhn. Its publication was a landmark event in the history, philosophy, and sociology of science. Kuhn challenged the then prevailing view of progress in science in which scientific progress was viewed as "development-by-accumulation" of accepted facts and theories. Kuhn argued for an episodic model in which periods of conceptual continuity and cumulative progress, referred to as periods of "normal science", were interrupted by periods of revolutionary science. The discovery of "anomalies" during revolutions in science leads to new paradigms. New paradigms then ask new questions of old data, move beyond the mere "puzzle-solving" of the previous paradigm, alter the rules of the game and change the "map" directing new research.

<span class="mw-page-title-main">Constructivism (philosophy of science)</span> Branch in philosophy of science

Constructivism is a view in the philosophy of science that maintains that scientific knowledge is constructed by the scientific community, which seeks to measure and construct models of the natural world. According to constructivists, natural science consists of mental constructs that aim to explain sensory experiences and measurements, and that there is no single valid methodology in science but rather a diversity of useful methods. They also hold that the world is independent of human minds, but knowledge of the world is always a human and social construction. Constructivism opposes the philosophy of objectivism, embracing the belief that human beings can come to know the truth about the natural world not mediated by scientific approximations with different degrees of validity and accuracy.

The historiography of science or the historiography of the history of science is the study of the history and methodology of the sub-discipline of history, known as the history of science, including its disciplinary aspects and practices and the study of its own historical development.

Commensurability is a concept in the philosophy of science whereby scientific theories are said to be "commensurable" if scientists can discuss the theories using a shared nomenclature that allows direct comparison of them to determine which one is more valid or useful. On the other hand, theories are incommensurable if they are embedded in starkly contrasting conceptual frameworks whose languages do not overlap sufficiently to permit scientists to directly compare the theories or to cite empirical evidence favoring one theory over the other. Discussed by Ludwik Fleck in the 1930s, and popularized by Thomas Kuhn in the 1960s, the problem of incommensurability results in scientists talking past each other, as it were, while comparison of theories is muddled by confusions about terms, contexts and consequences.

<span class="mw-page-title-main">Postpositivism</span> Metatheoretical stance on scientific inquiry

Postpositivism or postempiricism is a metatheoretical stance that critiques and amends positivism and has impacted theories and practices across philosophy, social sciences, and various models of scientific inquiry. While positivists emphasize independence between the researcher and the researched person, postpositivists argue that theories, hypotheses, background knowledge and values of the researcher can influence what is observed. Postpositivists pursue objectivity by recognizing the possible effects of biases. While positivists emphasize quantitative methods, postpositivists consider both quantitative and qualitative methods to be valid approaches.

<span class="mw-page-title-main">Sociology of the history of science</span>

The sociology of the history of science—related to sociology and philosophy of science, as well as the entire field of science studies—has in the 20th century been occupied with the question of large-scale patterns and trends in the development of science, and asking questions about how science "works" both in a philosophical and practical sense.

The history and philosophy of science (HPS) is an academic discipline that encompasses the philosophy of science and the history of science. Although many scholars in the field are trained primarily as either historians or as philosophers, there are degree-granting departments of HPS at several prominent universities. Though philosophy of science and history of science are their own disciplines, history and philosophy of science is a discipline in its own right.

Polylogism is the belief that different groups of people reason in fundamentally different ways. The term is attributed to Ludwig von Mises, who used it to refer to Nazism, Marxism and other class based social philosophies, before the writings of Thomas Kuhn and others made relativism a mainstream doctrine. In the Misesian sense of the term, a polylogist ascribes different forms of "logic" to different groups, which may include groups based on race, gender, class, or time period. It does not refer strictly to Boolean logic.

<span class="mw-page-title-main">Rhetoric of science</span> Body of scholarly literature

Rhetoric of science is a body of scholarly literature exploring the notion that the practice of science is a rhetorical activity. It emerged after a number of similarly oriented topics of research and discussion during the late 20th century, including the sociology of scientific knowledge, history of science, and philosophy of science, but it is practiced most typically by rhetoricians in academic departments of English, speech, and communication.

<span class="mw-page-title-main">Objectivity (science)</span> Type of attempt to uncover truths

In science, objectivity refers to attempts to do higher quality research by eliminating personal biases, emotions, and false beliefs, while focusing mainly on proven facts and evidence. It is often linked to observation as part of the scientific method. It is thus intimately related to the aim of testability and reproducibility. To be considered objective, the results of measurement must be communicated from person to person, and then demonstrated for third parties, as an advance in a collective understanding of the world. Such demonstrable knowledge has ordinarily conferred demonstrable powers of prediction or technology.

<i>The Copernican Revolution</i> (book) 1957 book by Thomas Kuhn

The Copernican Revolution is a 1957 book by the philosopher Thomas Kuhn, in which the author provides an analysis of the Copernican Revolution, documenting the pre-Ptolemaic understanding through the Ptolemaic system and its variants until the eventual acceptance of the Keplerian system.

Feminist epistemology is an examination of epistemology from a feminist standpoint.

A research program is a professional network of scientists conducting basic research. The term was used by philosopher of science Imre Lakatos to blend and revise the normative model of science offered by Karl Popper's The Logic of Scientific Discovery and the descriptive model of science offered by Thomas Kuhn's The Structure of Scientific Revolutions. Lakatos found falsificationism impractical and often not practiced, and found normal science—where a paradigm of science, mimicking an exemplar, extinguishes differing perspectives—more monopolistic than actual.

Critical reading is a form of language analysis that does not take the given text at face value, but involves a deeper examination of the claims put forth as well as the supporting points and possible counterarguments. The ability to reinterpret and reconstruct for improved clarity and readability is also a component of critical reading. The identification of possible ambiguities and flaws in the author's reasoning, in addition to the ability to address them comprehensively, are essential to this process. Critical reading, much like academic writing, requires the linkage of evidential points to corresponding arguments.

<span class="mw-page-title-main">Thomas Kuhn</span> American philosopher of science (1922–1996)

Thomas Samuel Kuhn was an American historian and philosopher of science whose 1962 book The Structure of Scientific Revolutions was influential in both academic and popular circles, introducing the term paradigm shift, which has since become an English-language idiom.

Conceptual change is the process whereby concepts and relationships between them change over the course of an individual person's lifetime or over the course of history. Research in four different fields – cognitive psychology, cognitive developmental psychology, science education, and history and philosophy of science - has sought to understand this process. Indeed, the convergence of these four fields, in their effort to understand how concepts change in content and organization, has led to the emergence of an interdisciplinary sub-field in its own right. This sub-field is referred to as "conceptual change" research.

The Kuhn-Popper debate was a debate surrounding research methods and the advancement of scientific knowledge. In 1965, at the University of London's International Colloquium in the Philosophy of Science, Thomas Kuhn and Karl Popper engaged in a debate that circled around three main areas of disagreement. These areas included the concept of a scientific method, the specific behaviors and practices of scientists, and the differentiation between scientific knowledge and other forms of knowledge.

References

Citations

  1. Kuhn, Thomas (1962). The Structure of Scientific Revolutions . pp.  54.
  2. Agamben, Giorgio. "What is a Paradigm?" (PDF). Retrieved November 14, 2015.
  3. Kuhn, 1970, p. 114
  4. Kuhn, Thomas (1962). The Structure of Scientific Revolutions . pp.  28.
  5. Kuhn, Thomas (1962). The Structure of Scientific Revolutions . pp.  50.
  6. Kuhn, Thomas (1962). The Structure of Scientific Revolutions . pp.  87.
  7. Kuhn, Thomas (1962). The Structure of Scientific Revolutions . pp.  91.
  8. Quoted in Thomas Kuhn, The Structure of Scientific Revolutions (1970 ed.): p. 150.
  9. Kuhn, Thomas (1962). The Structure of Scientific Revolutions . pp.  157.
  10. Sankey, Howard (1997) "Kuhn's ontological relativism," in Issues and Images in the Philosophy of Science: Scientific and Philosophical Essays in Honour of Azarya Polikarov, edited by Dimitri Ginev and Robert S. Cohen. Dordrecht: Kluwer Academic, 1997. Boston studies in the philosophy of science, vol. 192, pp. 305–20. ISBN   0792344448
  11. Thomas Kuhn, The Structure of Scientific Revolutions (3rd ed.): p. 199.
  12. Donald Davidson (1974). "On the Very Idea of a Conceptual Scheme". Proceedings and Addresses of the American Philosophical Association. 47: 5–20.
  13. see for example John Hassard (1993). Sociology and Organization Theory: Positivism, Paradigm and Postmodernity. Cambridge University Press. ISBN   0521350344.
  14. Williams, Gene (2019). Applied Qualitative Research Design. EDTECH. p. 103. ISBN   978-1-83947-216-9. OCLC   1132359447.
  15. Kuhn, 1970, pp. 154 and passim
  16. Joutsivuo, T (1997). "[Vesalius and De humani corporis fabrica: Galen's errors and the change of anatomy in the sixteenth century]". Hippokrates (Helsinki): 98–112. PMID   11625189.
  17. Kuhn, 1970, pp. 148 and passim
  18. Paradigm Shifts: Technology & Culture
  19. Kuhn, 1970, p. 157
  20. Kuhn, 1970, p. 155
  21. Trudeau, Richard J (1987). The non-Euclidean revolution . Boston: Birkhäuser. ISBN   978-0-8176-3311-0.
  22. Kuhn, 1970, pp. 151 and passim
  23. Kuhn, 1970, pp. 83–84, 151 and passim
  24. Kuhn, 1970, p. 107
  25. Gleick, James (1988). "Chapter 2:Revolution". Chaos:making a new science. New York: Viking Penguin. pp. 35–56. ISBN   0-670-81178-5.
  26. Kuhn, Thomas N. (1972) [1970]. "Logic of Discovery or Psychology of Research". In Lakatos, Imre; Musgrave, Alan (eds.). Criticism and the Growth of Knowledge (second ed.). Cambridge: Cambridge University Press. p.  6. ISBN   978-0-521-09623-2.
  27. James Clackson (2007). Indo European Linguistics: An Introduction . Cambridge University. p.  53. ISBN   9780521653671.
  28. Schmidt, Sophie C.; Marwick, Ben (28 January 2020). "Tool-Driven Revolutions in Archaeological Science". Journal of Computer Applications in Archaeology. 3 (1): 18–32. doi: 10.5334/jcaa.29 .
  29. Boris S. Kerner, Understanding Real Traffic: Paradigm Shift in Transportation Science, Springer, Berlin, Heidelberg, New York 2021. Archived from the original on 2021-06-02. Retrieved 2022-02-24.
  30. Cristianini, Nello (2012). "On the Current Paradigm in Artificial Intelligence". AI Communications. 27: 37–43. doi:10.3233/AIC-130582.
  31. Handa, M. L. (1986) "Peace Paradigm: Transcending Liberal and Marxian Paradigms". Paper presented in "International Symposium on Science, Technology and Development, New Delhi, India, March 20–25, 1987, Mimeographed at O.I.S.E., University of Toronto, Canada (1986)
  32. Perez, Carlota (2009). "Technological revolutions and techno-economic paradigms", Cambridge Journal of Economics, Vol. 34, No.1, pp. 185–202
  33. "Christopher H. (2009). "Global Warming and the Problem of Policy Innovation: Lessons from the Early Environmental Movement"".
  34. See also Stewart Brand#NASA images of Earth
  35. Kung, Hans & Tracy, David (ed). Paradigm Change in Theology. New York: Crossroad, 1989.
  36. Küng, Hans. Theology for the Third Millennium: An Ecumenical View. New York: Anchor Books, 1990.
  37. Robert Fulford, Globe and Mail (June 5, 1999). http://www.robertfulford.com/Paradigm.html Archived 2011-01-28 at the Wayback Machine Retrieved on 2008-04-25.
  38. "Cnet.com's Top 10 Buzzwords". Archived from the original on 2009-10-04.
  39. "The Complete Idiot's Guide to a Smart Vocabulary" pp. 142–43, author: Paul McFedries publisher: Alpha; 1st edition (May 7, 2001) Archived December 15, 2007, at the Wayback Machine ISBN   978-0-02-863997-0
  40. Cohen, Martin (2015). Paradigm Shift: How Expert Opinions Keep Changing on Life, the Universe and Everything. Imprint Academic. p. 181.
  41. "Martin Cohen". 6 September 2017.

Sources