Post-normal science (PNS) was developed in the 1990s by Silvio Funtowicz and Jerome R. Ravetz. [1] [2] [3] It is a problem-solving strategy appropriate when "facts [are] uncertain, values in dispute, stakes high and decisions urgent", conditions often present in policy-relevant research. In those situations, PNS recommends suspending temporarily the traditional scientific ideal of truth, concentrating on quality as assessed by internal and extended peer communities. [1] [4]
PNS can be considered as complementing the styles of analysis based on risk and cost-benefit analysis prevailing at that time and integrating concepts of a new critical science developed in previous works by the same authors. [5] [6]
PNS is not a new scientific method following Aristotle and Bacon, a new paradigm in the Kuhnian sense, or an attempt to reach a new ‘normal’. It is instead, a set of insights to guide actionable and robust knowledge production for policy decision making and action in challenges like pandemics, ecosystems collapse, biodiversity loss and, in general, sustainability transitions. [7] [8]
According to its proponents [3] Silvio Funtowicz and Jerome R. Ravetz, the name "post-normal science" echoes the seminal work on modern science by Thomas Kuhn. [9] For Carrozza [10] PNS can be "framed in terms of a call for the ‘democratization of expertise’", and as a "reaction against long-term trends of ‘scientization’ of politics—the tendency towards assigning to experts a critical role in policymaking while marginalizing laypeople". For Mike Hulme (2007), writing on The Guardian , climate change seems to fall into the category of issues which are best dealt with in the context of PNS and notes that “Disputes in post-normal science focus as often on the process of science - who gets funded, who evaluates quality, who has the ear of policy - as on the facts of science”. [11] Climate science as PNS was already proposed by the late Stephen Schneider, [12] and a similar linkage was propose for the workings of the Intergovernmental Panel on Climate Change. [13]
From the ecological perspective post-normal science can be situated in the context of 'crisis disciplines' – a term coined by the conservation biologist Michael E. Soulé to indicate approaches addressing fears, emerging in the seventies, that the world was on the verge of ecological collapse. In this respect Michael Egan [14] defines PNS as a 'survival science'. More recently PNS has been defined as a movement of ‘informed critical resistance, reform and the making of futures’. [15]
Moving from PNS Ziauddin Sardar developed the concept of Postnormal Times (PNT). Sardar was the editor of FUTURES when it published the article ‘Science for the post-normal age’ [3] presently the most cited paper of the journal. A recent review of academic literature conducted on the Web of Science and encompassing the topics of Futures studies, Foresight, Forecasting and Anticipation Practice [16] identifies the same paper as "the all-time publication that received the highest number of citations".
"At birth Post-normal science was conceived as an inclusive set of robust insights more than as an exclusive fully structured theory or field of practice". [17] Some of the ideas underpinning PNS can already be found in a work published in 1983 and entitled "Three types of risk assessment: a methodological analysis" [18] This and subsequent works [1] [2] [3] [5] show that PNS concentrates on few aspects of the complex relation between science and policy: the communication of uncertainty, the assessment of quality, and the justification and practice of the extended peer communities.
Coming to the PNS diagram (figure above) the horizontal axis represents ‘Systems Uncertainties’ and the vertical one ‘Decision Stakes’. The three quadrants identify Applied Science, Professional Consultancy, and Post-Normal Science. Different standards of quality and styles of analysis are appropriate to different regions in the diagram, i.e. post-normal science does not claim relevance and cogency on all of science's application but only on those defined by the PNS's mantram with a fourfold challenge: ‘facts uncertain, values in dispute, stakes high and decisions urgent’. For applied research science's own peer quality control system will suffice (or so was assumed at the moment PNS was formulated in the early nineties), while professional consultancy was considered appropriate for these settings which cannot be ‘peer-reviewed’, and where the skills and the tacit knowledge of a practitioner are needed at the forefront, e.g. in a surgery room, or in a house on fire. Here a surgeon or a firefighter takes a difficult technical decision based on her or his training and appreciation of the situation (the Greek concept of ‘Metis’ as discussed by J. C. Scott. [19] )
There are important linkages between PNS and complexity science, [20] e.g. system ecology (C. S. Holling) and hierarchy theory (Arthur Koestler). In PNS, complexity is respected through its recognition of a multiplicity of legitimate perspectives on any issue; this is close to the meaning espoused by Robert Rosen (theoretical biologist). [21] Reflexivity is realised through the extension of accepted ‘facts’ beyond the supposedly objective productions of traditional research. Also, the new participants in the process are not treated as passive learners at the feet of the experts, being coercively convinced through scientific demonstration. Rather, they will form an ‘extended peer community’, sharing the work of quality assurance of the scientific inputs to the process, and arriving at a resolution of issues through debate and dialogue. [22] The necessity to embrace complexity in a post-normal perspective to understand and face zoonoses is argumented by David Waltner-Toews. [23]
In PNS extended peer communities are spaces where perspectives, values, styles of knowing and power differentials are expressed in a context of inequalities and conflict. Resolutions, compromises and knowledge co-production are contingent and not necessarily achievable. [1] [4] [24] [25]
Beside its dominating influence in the literature on 'futures', [16] PNS is considered to have influenced the ecological ‘conservation versus preservation debate’, especially via its reading by American pragmatist Bryan G. Norton. According to Jozef Keulartz [26] the PNS concept of "extended peer community" influenced how Norton's developed his 'convergence hypothesis'. The hypothesis posits that ecologists of different orientation will converge once they start thinking 'as a mountain', or as a planet. For Norton this will be achieved via deliberative democracy, which will pragmatically overcome the black and white divide between conservationists and preservationists. More recently it has been argued that conservation science, embedded as it is in a multi-layered governance structures of policy-makers, practitioners, and stakeholders, is itself an 'extended peer community', and as a result conservation has always been ‘post-normal’. [27]
Other authors attribute to PNS the role of having stimulated the take up of transdisciplinary methodological frameworks, reliant on the social constructivist perspective embedded in PNS. [28] [8]
Post-normal science is intended as applicable to most instances where the use of evidence is contested due to different norms and values. Typical instances are in the use of evidence based policy [29] and in evaluation. [30]
As summarized in a recent work "the ideas and concepts of post normal science bring about the emergence of new problem solving strategies in which the role of science is appreciated in its full context of the complexity and the uncertainty of natural systems and the relevance of human commitments and values." [31]
For Peter Gluckman (2014), chief science advisor to the Prime Minister of New Zealand, post-normal science approaches are today appropriate for a host of problems including "eradication of exogenous pests […], offshore oil prospecting, legalization of recreational psychotropic drugs, water quality, family violence, obesity, teenage morbidity and suicide, the ageing population, the prioritization of early-childhood education, reduction of agricultural greenhouse gases, and balancing economic growth and environmental sustainability". [32]
Conservation science is also a field where PNS is suggested as to fill the space between research, policy, and implementation, [33] [34] as well as to ensure pluralism in analysis. [35] [36] Ecosystem services are a topical subject for PNS. [37]
Reviews of the history and evolution of PNS, its definitions, conceptualizations, and uses can be found in Turnpenny et al., 2010, [38] and in The Routledge Handbook of Ecological Economics (Nature and Society). [8] Articles on PNS are published in Nature [32] [39] [40] [41] [42] [43] and related journals. [44] [45]
A criticism of post-normal science is offered by Weingart (1997) [46] for whom post-normal science does not introduce a new epistemology but retraces earlier debates linked to the so-called "finalization thesis". For Jörg Friedrichs [47] – comparing the issues of climate change and peak energy – an extension of the peer community has taken place in the climate science community, transforming climate scientists into ‘stealth advocates’, [48] while scientists working on energy security – without PNS, would still maintain their credentials of neutrality and objectivity. Another criticism is that the extended peer community's use undermines the scientific method's use of empiricism and that its goal would be better addressed by providing greater science education.
It has been argued [49] that post-normal science scholars have been prescient in anticipating the present crisis in science's quality control and reproducibility. A group of scholars of post-normal science orientation has published in 2016 a volume on the topic, [50] discussing inter alia what this community perceive as the root causes of the present science's crisis. [51] [49] [52] [53]
Among the quantitative styles of analysis which make reference to post-normal science one can mention NUSAP for numerical information, sensitivity auditing for indicators and mathematical modelling, Quantitative storytelling for exploring multiple frames in a quantitative analysis, and MUSIASEM in the field of social metabolism. A work where these approaches are suggested for sustainability is in. [54]
In relation to mathematical modelling post-normal science suggests a participatory approach, whereby ‘models to predict and control the future’ are replaced by ‘models to map our ignorance about the future’, in the process exploring and revealing the metaphors embedded in the model. [55] PNS is also known for its definition of garbage in, garbage out (GIGO): in modelling GIGO occurs when the uncertainties in the inputs must be suppressed, lest the outputs become completely indeterminate. [56]
On 25 March 2020, in the midst of the COVID-19 pandemic, a group of scholars of post-normal orientation published on the blog section of the STEPS Centre (for Social, Technological and Environmental Pathways to Sustainability) at the University of Sussex. The piece [57] argues that the COVID-19 emergency has all the elements of a post-normal science context, and notes that "this pandemic offers society an occasion to open a fresh discussion on whether we now need to learn how to do science in a different way".
The journal FUTURES devoted several specials issues to post-normal science.
Another special issue on post-normal science was published on the journal Science, Technology, & Human Values in May 2011.
Human ecology is an interdisciplinary and transdisciplinary study of the relationship between humans and their natural, social, and built environments. The philosophy and study of human ecology has a diffuse history with advancements in ecology, geography, sociology, psychology, anthropology, zoology, epidemiology, public health, and home economics, among others.
Public awareness of science (PAS) is everything relating to the awareness, attitudes, behaviors, opinions, and activities that comprise the relations between the general public or lay society as a whole to scientific knowledge and organization. This concept is also known as public understanding of science (PUS), or more recently, public engagement with science and technology (PEST). It is a comparatively new approach to the task of exploring the multitude of relations and linkages science, technology, and innovation have among the general public. While early work in the discipline focused on increasing or augmenting the public's knowledge of scientific topics, in line with the information deficit model of science communication, the deficit model has largely been abandoned by science communication researchers. Instead, there is an increasing emphasis on understanding how the public chooses to use scientific knowledge and on the development of interfaces to mediate between expert and lay understandings of an issue. Newer frameworks of communicating science include the dialogue and the participation models. The dialogue model aims to create spaces for conversations between scientists and non-scientists to occur while the participation model aims to include non-scientists in the process of science.
Integrated assessment modelling (IAM) or integrated modelling (IM) is a term used for a type of scientific modelling that tries to link main features of society and economy with the biosphere and atmosphere into one modelling framework. The goal of integrated assessment modelling is to accommodate informed policy-making, usually in the context of climate change though also in other areas of human and social development. While the detail and extent of integrated disciplines varies strongly per model, all climatic integrated assessment modelling includes economic processes as well as processes producing greenhouse gases. Other integrated assessment models also integrate other aspects of human development such as education, health, infrastructure, and governance.
Jerome (Jerry) Ravetz is a philosopher of science. He is best known for his books analysing scientific knowledge from a social and ethical perspective, focussing on issues of quality. He is the co-author of the NUSAP notational system and of Post-normal science. He is currently an Associate Fellow at the Institute for Science, Innovation and Society, University of Oxford.
Environmental issues are disruptions in the usual function of ecosystems. Further, these issues can be caused by humans or they can be natural. These issues are considered serious when the ecosystem cannot recover in the present situation, and catastrophic if the ecosystem is projected to certainly collapse.
Stuart Leonard Pimm is the Doris Duke Chair of Conservation Ecology at Duke University. His early career was as a theoretical ecologist but he now specialises in scientific research of biodiversity and conservation biology.
Iulie Margrethe Nicolaysen Aslaksen is a Norwegian economist and Senior Researcher at Statistics Norway. She was a member of the Petroleum Price Board from 1990 to 2000. She is an expert on energy and environmental economics, including petroleum economics, climate policy and economics and sustainable development. She is cand.oecon. from the University of Oslo in 1981 and dr.polit. from 1990. She has been a visiting researcher and Fulbright Fellow at Harvard University and the University of California, Berkeley, and Associate Professor of Economics at the University of Oslo. She was a member of the government commissions resulting in the Norwegian Official Report 1988:21 Norsk økonomi i forandring and the Norwegian Official Report 1999:11 Analyse av investeringsutviklingen på kontinentalsokkelen.
William F. Laurance, also known as Bill Laurance, is Distinguished Research Professor at James Cook University, Australia and has been elected as a Fellow of the Australian Academy of Science. He has received an Australian Laureate Fellowship from the Australian Research Council. He held the Prince Bernhard Chair for International Nature Conservation at Utrecht University, Netherlands from 2010 to 2014.
Sensitivity auditing is an extension of sensitivity analysis for use in policy-relevant modelling studies. Its use is recommended - i.a. in the European Commission Impact assessment guidelines and by the European Science Academies- when a sensitivity analysis (SA) of a model-based study is meant to demonstrate the robustness of the evidence provided by the model in the context whereby the inference feeds into a policy or decision-making process.
NUSAP is a notational system for the management and communication of uncertainty in science for policy, based on five categories for characterizing any quantitative statement: Numeral, Unit, Spread, Assessment and Pedigree. NUSAP was introduced by Silvio Funtowicz and Jerome Ravetz in the 1990 book Uncertainty and Quality in Science for Policy. See also van der Sluijs et al. 2005.
Uncertainty and Quality in Science for Policy is a 1990 book by Silvio Funtowicz and Jerome Ravetz, in which the authors explain the notational system NUSAP and applies it to several examples from the environmental sciences. The work is considered foundational to the development of post-normal science.
Silvio O. Funtowicz is a philosopher of science active in the field of science and technology studies. He created the NUSAP, a notational system for characterising uncertainty and quality in quantitative expressions, and together with Jerome R. Ravetz he introduced the concept of post-normal science. He is currently a guest researcher at the Centre for the Study of the Sciences and the Humanities (SVT), University of Bergen (Norway).
Science on the verge is a book written in 2016 by group of eight scholars working in the tradition of Post-normal science. The book analyzes the main features and possible causes of the present science's crisis.
The No Nonsense Guide to Science is a 2006 book on Post-normal science (PNS). It was written by American born British historian and philosopher of science Jerome Ravetz.
John Jay Kineman is an American physical scientist and theoretical ecologist, affiliated with the Cooperative Institute for Research in the Environmental Sciences (CIRES) at the University of Colorado Boulder, Past President of the International Society for the Systems Sciences (ISSS), and Fellow of the Sri Sathya Sai Center for Human Values in Puttaparthi, India; known for his work in the fields of Geographical information systems, ecological characterization, ecological niche modeling, Complex Systems Theory, and Vedic Studies.
Clive L. Spash is an ecological economist. He currently holds the Chair of Public Policy and Governance at Vienna University of Economics and Business, appointed in 2010. He is also Editor-in-Chief of the academic journal Environmental Values.
Erika S. Zavaleta is an American professor of ecology and evolutionary biology at the University of California, Santa Cruz. Zavaleta is recognized for her research focusing on topics including plant community ecology, conservation practices for terrestrial ecosystems, and impacts of community dynamics on ecosystem functions.
Andrea Saltelli is an Italian scholar specializing in quantification using statistical and sociological tools. He has extended the theory of sensitivity analysis to sensitivity auditing, focusing on physical chemistry, environmental statistics, impact assessment and science for policy. He is currently Counsellor at the UPF Barcelona School of Management.
The concept of Extended peer community belongs to the field of Sociology of science, and in particular the use of science in the solution of social, political or ecological problems. It was first introduced by in the 1990s by Silvio Funtowicz and Jerome R. Ravetz. in the context of what would become Post-normal science. An Extended peer community is intended by these authors as a space where both credentialed experts from different disciplines and lay stakeholders can discuss and deliberate.
The Politics of Modelling, Numbers Between Science and Policy is a multi-authors book edited by Andrea Saltelli and Monica Di Fiore and published in August 2023 by Oxford University Press.