Scientific community

Last updated

The scientific community is a diverse network of interacting scientists. It includes many "sub-communities" working on particular scientific fields, and within particular institutions; interdisciplinary and cross-institutional activities are also significant. Objectivity is expected to be achieved by the scientific method. Peer review, through discussion and debate within journals and conferences, assists in this objectivity by maintaining the quality of research methodology and interpretation of results. [1]

Contents

History of scientific communities

The eighteenth century had some societies made up of men who studied nature, also known as natural philosophers and natural historians, which included even amateurs. As such these societies were more like local clubs and groups with diverse interests than actual scientific communities, which usually had interests on specialized disciplines. [2] Though there were a few older societies of men who studied nature such as the Royal Society of London, the concept of scientific communities emerged in the second half of the 19th century, not before, because it was in this century that the language of modern science emerged, the professionalization of science occurred, specialized institutions were created, and the specialization of scientific disciplines and fields occurred. [2]

For instance, the term scientist was first coined by the naturalist-theologian William Whewell in 1834 and the wider acceptance of the term along with the growth of specialized societies allowed for researchers to see themselves as a part of a wider imagined community, similar to the concept of nationhood. [2]

Membership, status and interactions

Membership in the community is generally, but not exclusively, a function of education, employment status, research activity and institutional affiliation. Status within the community is highly correlated with publication record, [3] and also depends on the status within the institution and the status of the institution. [4] Researchers can hold roles of different degrees of influence inside the scientific community. Researchers of a stronger influence can act as mentors for early career researchers and steer the direction of research in the community like agenda setters. [4] Scientists are usually trained in academia through universities. As such, degrees in the relevant scientific sub-disciplines are often considered prerequisites in the relevant community. In particular, the PhD with its research requirements functions as a marker of being an important integrator into the community, though continued membership is dependent on maintaining connections to other researchers through publication, technical contributions, and conferences. After obtaining a PhD an academic scientist may continue through being on an academic position, receiving a post-doctoral fellowships and onto professorships. Other scientists make contributions to the scientific community in alternate ways such as in industry, education, think tanks, or the government.

Members of the same community do not need to work together. [1] Communication between the members is established by disseminating research work and hypotheses through articles in peer reviewed journals, or by attending conferences where new research is presented and ideas exchanged and discussed. There are also many informal methods of communication of scientific work and results as well. And many in a coherent community may actually not communicate all of their work with one another, for various professional reasons.

Speaking for the scientific community

Unlike in previous centuries when the community of scholars were all members of few learned societies and similar institutions, there are no singular bodies or individuals which can be said today to speak for all science or all scientists. This is partly due to the specialized training most scientists receive in very few fields. As a result, many would lack expertise in all the other fields of the sciences. For instance, due to the increasing complexity of information and specialization of scientists, most of the cutting-edge research today is done by well funded groups of scientists, rather than individuals. [5] However, there are still multiple societies and academies in many countries which help consolidate some opinions and research to help guide public discussions on matters of policy and government-funded research. For example, the United States' National Academy of Sciences (NAS) and United Kingdom's Royal Society sometimes act as surrogates when the opinions of the scientific community need to be ascertained by policy makers or the national government, but the statements of the National Academy of Science or the Royal Society are not binding on scientists nor do they necessarily reflect the opinions of every scientist in a given community since membership is often exclusive, their commissions are explicitly focused on serving their governments, and they have never "shown systematic interest in what rank-and-file scientists think about scientific matters". [6] Exclusivity of membership in these types of organizations can be seen in their election processes in which only existing members can officially nominate others for candidacy of membership. [7] [8] It is very unusual for organizations like the National Academy of Science to engage in external research projects since they normally focus on preparing scientific reports for government agencies. [9] An example of how rarely the NAS engages in external and active research can be seen in its struggle to prepare and overcome hurdles, due to its lack of experience in coordinating research grants and major research programs on the environment and health. [9]

Nevertheless, general scientific consensus is a concept which is often referred to when dealing with questions that can be subject to scientific methodology. While the consensus opinion of the community is not always easy to ascertain or fix due to paradigm shifting, generally the standards and utility of the scientific method have tended to ensure, to some degree, that scientists agree on some general corpus of facts explicated by scientific theory while rejecting some ideas which run counter to this realization. The concept of scientific consensus is very important to science pedagogy, the evaluation of new ideas, and research funding. Sometimes it is argued that there is a closed shop bias within the scientific community toward new ideas. Protoscience, fringe science, and pseudoscience have been topics that discuss demarcation problems. In response to this some non-consensus claims skeptical organizations, not research institutions, have devoted considerable amounts of time and money contesting ideas which run counter to general agreement on a particular topic.

Philosophers of science argue over the epistemological limits of such a consensus and some, including Thomas Kuhn, have pointed to the existence of scientific revolutions in the history of science as being an important indication that scientific consensus can, at times, be wrong. Nevertheless, the sheer explanatory power of science in its ability to make accurate and precise predictions and aid in the design and engineering of new technology has ensconced "science" and, by proxy, the opinions of the scientific community as a highly respected form of knowledge both in the academy and in popular culture.

Political controversies

The high regard with which scientific results are held in Western society has caused a number of political controversies over scientific subjects to arise. An alleged conflict thesis proposed in the 19th century between religion and science has been cited by some as representative of a struggle between tradition and substantial change and faith and reason.[ citation needed ]. A popular example used to support this thesis is when Galileo was tried before the Inquisition concerning the heliocentric model. [10] The persecution began after Pope Urban VIII permitted Galileo to write about the Copernican model. Galileo had used arguments from the Pope and put them in the voice of the simpleton in the work "Dialogue Concerning the Two Chief World Systems" which caused great offense to him. [11] Even though many historians of science have discredited the conflict thesis [12] it still remains a popular belief among many including some scientists. In more recent times, the creation–evolution controversy has resulted in many religious believers in a supernatural creation to challenge some naturalistic assumptions that have been proposed in some of the branches of scientific fields such as evolutionary biology, geology, and astronomy. Although the dichotomy seems to be of a different outlook from a Continental European perspective, it does exist. The Vienna Circle, for instance, had a paramount (i.e. symbolic) influence on the semiotic regime represented by the Scientific Community in Europe.

In the decades following World War II, some were convinced that nuclear power would solve the pending energy crisis by providing energy at low cost. This advocacy led to the construction of many nuclear power plants, but was also accompanied by a global political movement opposed to nuclear power due to safety concerns and associations of the technology with nuclear weapons. Mass protests in the United States and Europe during the 1970s and 1980s along with the disasters of Chernobyl and Three Mile Island led to a decline in nuclear power plant construction.

In the last decades or so, both global warming and stem cells have placed the opinions of the scientific community in the forefront of political debate.

See also

Related Research Articles

<span class="mw-page-title-main">Physics</span> Scientific field of study

Physics is the natural science of matter, involving the study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. A scientist who specializes in the field of physics is called a physicist.

<span class="mw-page-title-main">Physicist</span> Scientist specializing in the field of physics

A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate causes of phenomena, and usually frame their understanding in mathematical terms. They work across a wide range of research fields, spanning all length scales: from sub-atomic and particle physics, through biological physics, to cosmological length scales encompassing the universe as a whole. The field generally includes two types of physicists: experimental physicists who specialize in the observation of natural phenomena and the development and analysis of experiments, and theoretical physicists who specialize in mathematical modeling of physical systems to rationalize, explain and predict natural phenomena.

Science is a rigorous, systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about the world. Modern science is typically divided into three major branches: the natural sciences, which study the physical world; the social sciences, which study individuals and societies; and the formal sciences, which study formal systems, governed by axioms and rules. There is disagreement whether the formal sciences are science disciplines, as they do not rely on empirical evidence. Applied sciences are disciplines that use scientific knowledge for practical purposes, such as in engineering and medicine.

Social science is one of the branches of science, devoted to the study of societies and the relationships among individuals within those societies. The term was formerly used to refer to the field of sociology, the original "science of society", established in the 18th century. In addition to sociology, it now encompasses a wide array of academic disciplines, including anthropology, archaeology, economics, human geography, linguistics, management science, communication science, psychology and political science.

<span class="mw-page-title-main">Scientific method</span> Interplay between observation, experiment and theory in science

The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century.

<span class="mw-page-title-main">Scientist</span> Person who conducts scientific research

A scientist is a person who researches to advance knowledge in an area of the natural sciences.

<span class="mw-page-title-main">Relationship between religion and science</span>

The relationship between religion and science involves discussions that interconnect the study of the natural world, history, philosophy, and theology. Even though the ancient and medieval worlds did not have conceptions resembling the modern understandings of "science" or of "religion", certain elements of modern ideas on the subject recur throughout history. The pair-structured phrases "religion and science" and "science and religion" first emerged in the literature during the 19th century. This coincided with the refining of "science" and of "religion" as distinct concepts in the preceding few centuries—partly due to professionalization of the sciences, the Protestant Reformation, colonization, and globalization. Since then the relationship between science and religion has been characterized in terms of "conflict", "harmony", "complexity", and "mutual independence", among others.

<span class="mw-page-title-main">Academy</span> Institution of higher learning

An academy is an institution of secondary or tertiary higher learning. The name traces back to Plato's school of philosophy, founded approximately 386 BC at Akademia, a sanctuary of Athena, the goddess of wisdom and skill, north of Athens, Greece.

In science and philosophy, a paradigm is a distinct set of concepts or thought patterns, including theories, research methods, postulates, and standards for what constitute legitimate contributions to a field. The word paradigm is Greek in origin, meaning "pattern", and is used to illustrate similar occurrences.

The Accademia dei Lincei is one of the oldest and most prestigious European scientific institutions, located at the Palazzo Corsini on the Via della Lungara in Rome, Italy.

<span class="mw-page-title-main">Learned society</span> Organization promoting a field or discipline

A learned society is an organization that exists to promote an academic discipline, profession, or a group of related disciplines such as the arts and sciences. Membership may be open to all, may require possession of some qualification, or may be an honour conferred by election.

Scientific consensus is the generally held judgment, position, and opinion of the majority or the supermajority of scientists in a particular field of study at any particular time.

<span class="mw-page-title-main">Sociology of the history of science</span>

The sociology of the history of science—related to sociology and philosophy of science, as well as the entire field of science studies—has in the 20th century been occupied with the question of large-scale patterns and trends in the development of science, and asking questions about how science "works" both in a philosophical and practical sense.

<span class="mw-page-title-main">Pontifical Academy of Sciences</span> Scientific academy of the Vatican City

The Pontifical Academy of Sciences is a scientific academy of the Vatican City, established in 1936 by Pope Pius XI. Its aim is to promote the progress of the mathematical, physical, and natural sciences and the study of related epistemological problems. The Accademia Pontificia dei Nuovi Lincei was founded in 1847 as a more closely supervised successor to the Accademia dei Lincei established in Rome in 1603 by the learned Roman Prince, Federico Cesi (1585–1630), who was a young botanist and naturalist, and which claimed Galileo Galilei as its president. The Accademia dei Lincei survives as a wholly separate institution.

Through history, the systems of economic support for scientists and their work have been important determinants of the character and pace of scientific research. The ancient foundations of the sciences were driven by practical and religious concerns and or the pursuit of philosophy more generally. From the Middle Ages until the Age of Enlightenment, scholars sought various forms of noble and religious patronage or funded their own work through medical practice. In the 18th and 19th centuries, many disciplines began to professionalize, and both government-sponsored "prizes" and the first research professorships at universities drove scientific investigation. In the 20th century, a variety of sources, including government organizations, military funding, patent profits, corporate sponsorship, and private philanthropies, have shaped scientific research.

<span class="mw-page-title-main">Gabriel Almond</span> American political scientist (1911–2002)

Gabriel Abraham Almond was an American political scientist best known for his pioneering work on comparative politics, political development, and political culture.

An academic discipline or academic field is a subdivision of knowledge that is taught and researched at the college or university level. Disciplines are defined and recognized by the academic journals in which research is published, and the learned societies and academic departments or faculties within colleges and universities to which their practitioners belong. Academic disciplines are conventionally divided into the humanities, including language, art and cultural studies, and the scientific disciplines, such as physics, chemistry, and biology; the social sciences are sometimes considered a third category.

<span class="mw-page-title-main">Science and the Catholic Church</span> Overview of the relationship between science and the Catholic Church

The relationship between science and the Catholic Church is a widely debated subject. Historically, the Catholic Church has been a patron of sciences. It has been prolific in the foundation and funding of schools, universities, and hospitals, and many clergy have been active in the sciences. Some historians of science such as Pierre Duhem credit medieval Catholic mathematicians and philosophers such as John Buridan, Nicole Oresme, and Roger Bacon as the founders of modern science. Duhem found "the mechanics and physics, of which modern times are justifiably proud, to proceed by an uninterrupted series of scarcely perceptible improvements from doctrines professed in the heart of the medieval schools." Historian John Heilbron says that "The Roman Catholic Church gave more financial and social support to the study of astronomy for over six centuries, from the recovery of ancient learning during the late Middle Ages into the Enlightenment, than any other, and probably all, other Institutions." The conflict thesis and other critiques emphasize the historical or contemporary conflict between the Catholic Church and science, citing, in particular, the trial of Galileo as evidence. For its part, the Catholic Church teaches that science and the Christian faith are complementary, as can be seen from the Catechism of the Catholic Church which states in regards to faith and science:

Though faith is above reason, there can never be any real discrepancy between faith and reason. Since the same God who reveals mysteries and infuses faith has bestowed the light of reason on the human mind, God cannot deny himself, nor can truth ever contradict truth. ... Consequently, methodical research in all branches of knowledge, provided it is carried out in a truly scientific manner and does not override moral laws, can never conflict with the faith, because the things of the world and the things of faith derive from the same God. The humble and persevering investigator of the secrets of nature is being led, as it were, by the hand of God despite himself, for it is God, the conserver of all things, who made them what they are.

<span class="mw-page-title-main">Christianity and science</span> Relationship between Christianity and science

Most scientific and technical innovations prior to the Scientific Revolution were achieved by societies organized by religious traditions. Ancient Christian scholars pioneered individual elements of the scientific method. Historically, Christianity has been and still is a patron of sciences. It has been prolific in the foundation of schools, universities and hospitals, and many Christian clergy have been active in the sciences and have made significant contributions to the development of science.

Scientific dissent is dissent from scientific consensus. Disagreements can be useful for finding problems in underlying assumptions, methodologies, and reasoning, as well as for generating and testing new ways of tackling the unknown. In modern times, with the increased role of science on the society and the politicization of science, a new aspect gained prominence: effects of scientific dissent on public policies.

References

  1. 1 2 Kornfeld, W; Hewitt, CE (1981). "The Scientific Community Metaphor" (PDF). IEEE Transactions on Systems, Man, and Cybernetics. 11 (1): 24–33. doi:10.1109/TSMC.1981.4308575. hdl: 1721.1/5693 . S2CID   1322857.
  2. 1 2 3 Cahan, David (2003). "Institutions and Communities". In Cahan, David (ed.). From Natural Philosophy to the Sciences: Writing the History of Nineteenth-Century Science. Chicago: University of Chicago Press. pp. 291–328. ISBN   978-0226089287.
  3. Yearley, Steven; Collins, Harry M. (1992), "Epistemological chicken", in Pickering, Andrew (ed.), Science as practice and culture, Chicago: University of Chicago Press, pp. 301–326, ISBN   9780226668017.
  4. 1 2 Höhle, Ester (2015). "From apprentice to agenda-setter: Comparative analysis of the influence of contract conditions on roles in the scientific community". Studies in Higher Education. 40 (8): 1423–1437. doi:10.1080/03075079.2015.1060704. S2CID   142732725.
  5. Simonton, Dean Keith (2013). "After Einstein: Scientific genius is extinct". Nature. 493 (7434): 602. Bibcode:2013Natur.493..602S. doi: 10.1038/493602a . PMID   23364725.
  6. Fuller, Steve (2007). Dissent Over Descent. Icon. p. 25. ISBN   9781840468045.
  7. Bruce Alberts, Kenneth R. Fulton (24 May 2005). "Election to the National Academy of Sciences: Pathways to membership". Proceedings of the National Academy of Sciences. 102 (21): 7405–7406. doi: 10.1073/pnas.0503457102 . PMC   1140467 . PMID   16586925.
  8. "Election to the Fellowship of the Royal Society". Archived from the original on 13 July 2015. Retrieved 24 January 2013.
  9. 1 2 Shen, Helen (2013). "Oil money takes US academy into uncharted waters". Nature. 494 (7437): 295. Bibcode:2013Natur.494..295S. doi: 10.1038/494295a . PMID   23426305.
  10. Page 37 John Hedley Brooke: Science and Religion – Some Historical Perspectives, Cambridge 1991
  11. "Galileo Project - Pope Urban VIII Biography".
  12. Ferngren, Gary (2002). Science & Religion: A Historical Introduction. Johns Hopkins University Press. pp. Introduction, p.ix–x. ISBN   978-0-8018-7038-5.
Sociologies of science
History and philosophy of science
Other articles