Academic discipline

Last updated

An academic discipline or academic field is a subdivision of knowledge that is taught and researched at the college or university level. Disciplines are defined (in part) and recognized by the academic journals in which research is published, and the learned societies and academic departments or faculties within colleges and universities to which their practitioners belong. Academic disciplines are conventionally divided into the humanities, including language, art and cultural studies, and the scientific disciplines, such as physics, chemistry, and biology; the social sciences are sometimes considered a third category.

Contents

Individuals associated with academic disciplines are commonly referred to as experts or specialists. Others, who may have studied liberal arts or systems theory rather than concentrating in a specific academic discipline, are classified as generalists.

While academic disciplines in and of themselves are more or less focused practices, scholarly approaches such as multidisciplinarity/interdisciplinarity, transdisciplinarity, and cross-disciplinarity integrate aspects from multiple academic disciplines, therefore addressing any problems that may arise from narrow concentration within specialized fields of study. For example, professionals may encounter trouble communicating across academic disciplines because of differences in language, specified concepts, or methodology.

Some researchers believe that academic disciplines may, in the future, be replaced by what is known as Mode 2 [1] or "post-academic science", [2] which involves the acquisition of cross-disciplinary knowledge through the collaboration of specialists from various academic disciplines.[ citation needed ]

It is also known as a field of study, field of inquiry, research field and branch of knowledge. The different terms are used in different countries and fields.

History of the concept

The University of Paris in 1231 consisted of four faculties: Theology, Medicine, Canon Law and Arts. [3] Educational institutions originally used the term "discipline" to catalog and archive the new and expanding body of information produced by the scholarly community. Disciplinary designations originated in German universities during the beginning of the nineteenth century.[ citation needed ]

Most academic disciplines have their roots in the mid-to-late-nineteenth century secularization of universities, when the traditional curricula were supplemented with non-classical languages and literatures, social sciences such as political science, economics, sociology and public administration, and natural science and technology disciplines such as physics, chemistry, biology, and engineering.[ citation needed ]

In the early twentieth century, new academic disciplines such as education and psychology were added. In the 1970s and 1980s, there was an explosion of new academic disciplines focusing on specific themes, such as media studies, women's studies, and Africana studies. Many academic disciplines designed as preparation for careers and professions, such as nursing, hospitality management, and corrections, also emerged in the universities. Finally, interdisciplinary scientific fields of study such as biochemistry and geophysics gained prominence as their contribution to knowledge became widely recognized. Some new disciplines, such as public administration, can be found in more than one disciplinary setting; some public administration programs are associated with business schools (thus emphasizing the public management aspect), while others are linked to the political science field (emphasizing the policy analysis aspect).[ citation needed ]

As the twentieth century approached, these designations were gradually adopted by other countries and became the accepted conventional subjects. However, these designations differed between various countries. [4] In the twentieth century, the natural science disciplines included: physics, chemistry, biology, geology, and astronomy. The social science disciplines included: economics, politics, sociology, and psychology.[ citation needed ]

Prior to the twentieth century, categories were broad and general, which was expected due to the lack of interest in science at the time. With rare exceptions, practitioners of science tended to be amateurs and were referred to as "natural historians" and "natural philosophers"—labels that date back to Aristotle—instead of "scientists". [5] Natural history referred to what we now call life sciences and natural philosophy referred to the current physical sciences.

Prior to the twentieth century, few opportunities existed for science as an occupation outside the educational system. Higher education provided the institutional structure for scientific investigation, as well as economic support for research and teaching. Soon, the volume of scientific information rapidly increased and researchers realized the importance of concentrating on smaller, narrower fields of scientific activity. Because of this narrowing, scientific specializations emerged. As these specializations developed, modern scientific disciplines in universities also improved their sophistication. Eventually, academia's identified disciplines became the foundations for scholars of specific specialized interests and expertise. [6]

Functions and criticism

An influential critique of the concept of academic disciplines came from Michel Foucault in his 1975 book, Discipline and Punish . Foucault asserts that academic disciplines originate from the same social movements and mechanisms of control that established the modern prison and penal system in eighteenth-century France, and that this fact reveals essential aspects they continue to have in common: "The disciplines characterize, classify, specialize; they distribute along a scale, around a norm, hierarchize individuals in relation to one another and, if necessary, disqualify and invalidate." (Foucault, 1975/1979, p. 223) [7]

Communities of academic disciplines

Communities of academic disciplines can be found outside academia within corporations, government agencies, and independent organizations, where they take the form of associations of professionals with common interests and specific knowledge. Such communities include corporate think tanks, NASA, and IUPAC. Communities such as these exist to benefit the organizations affiliated with them by providing specialized new ideas, research, and findings.

Nations at various developmental stages will find the need for different academic disciplines during different times of growth. A newly developing nation will likely prioritize government, political matters and engineering over those of the humanities, arts and social sciences. On the other hand, a well-developed nation may be capable of investing more in the arts and social sciences. Communities of academic disciplines would contribute at varying levels of importance during different stages of development.

Interactions

These categories explain how the different academic disciplines interact with one another.

Multidisciplinary

Multidisciplinary knowledge is associated with more than one existing academic discipline or profession.

A multidisciplinary community or project is made up of people from different academic disciplines and professions. These people are engaged in working together as equal stakeholders in addressing a common challenge. A multidisciplinary person is one with degrees from two or more academic disciplines. This one person can take the place of two or more people in a multidisciplinary community. Over time, multidisciplinary work does not typically lead to an increase or a decrease in the number of academic disciplines. One key question is how well the challenge can be decomposed into subparts, and then addressed via the distributed knowledge in the community. The lack of shared vocabulary between people and communication overhead can sometimes be an issue in these communities and projects. If challenges of a particular type need to be repeatedly addressed so that each one can be properly decomposed, a multidisciplinary community can be exceptionally efficient and effective.[ citation needed ]

There are many examples of a particular idea appearing in different academic disciplines, all of which came about around the same time. One example of this scenario is the shift from the approach of focusing on sensory awareness of the whole, "an attention to the 'total field'", a "sense of the whole pattern, of form and function as a unity", an "integral idea of structure and configuration". This has happened in art (in the form of cubism), physics, poetry, communication and educational theory. According to Marshall McLuhan, this paradigm shift was due to the passage from the era of mechanization, which brought sequentiality, to the era of the instant speed of electricity, which brought simultaneity. [8]

Multidisciplinary approaches also encourage people to help shape the innovation of the future. The political dimensions of forming new multidisciplinary partnerships to solve the so-called societal Grand Challenges were presented in the Innovation Union and in the European Framework Programme, the Horizon 2020 operational overlay. Innovation across academic disciplines is considered the pivotal foresight of the creation of new products, systems, and processes for the benefit of all societies' growth and wellbeing. Regional examples such as Biopeople and industry-academia initiatives in translational medicine such as SHARE.ku.dk in Denmark provide evidence of the successful endeavour of multidisciplinary innovation and facilitation of the paradigm shift.[ citation needed ]

Transdisciplinary

In practice, transdisciplinary can be thought of as the union of all interdisciplinary efforts. While interdisciplinary teams may be creating new knowledge that lies between several existing disciplines, a transdisciplinary team is more holistic and seeks to relate all disciplines into a coherent whole.

Cross-disciplinary

Cross-disciplinary knowledge is that which explains aspects of one discipline in terms of another. Common examples of cross-disciplinary approaches are studies of the physics of music or the politics of literature.

Bibliometric studies of disciplines

Bibliometrics can be used to map several issues in relation to disciplines, for example, the flow of ideas within and among disciplines (Lindholm-Romantschuk, 1998) [9] or the existence of specific national traditions within disciplines. [10] Scholarly impact and influence of one discipline on another may be understood by analyzing the flow of citations. [11]

The Bibliometrics approach is described as straightforward because it is based on simple counting. The method is also objective but the quantitative method may not be compatible with a qualitative assessment and therefore manipulated. The number of citations is dependent on the number of persons working in the same domain instead of inherent quality or published result's originality. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Interdisciplinarity</span> Combination of two or more academic disciplines into one activity

Interdisciplinarity or interdisciplinary studies involves the combination of multiple academic disciplines into one activity. It draws knowledge from several other fields like sociology, anthropology, psychology, economics, etc. It is about creating something by thinking across boundaries. It is related to an interdiscipline or an interdisciplinary field, which is an organizational unit that crosses traditional boundaries between academic disciplines or schools of thought, as new needs and professions emerge. Large engineering teams are usually interdisciplinary, as a power station or mobile phone or other project requires the melding of several specialties. However, the term "interdisciplinary" is sometimes confined to academic settings.

A citation index is a kind of bibliographic index, an index of citations between publications, allowing the user to easily establish which later documents cite which earlier documents. A form of citation index is first found in 12th-century Hebrew religious literature. Legal citation indexes are found in the 18th century and were made popular by citators such as Shepard's Citations (1873). In 1961, Eugene Garfield's Institute for Scientific Information (ISI) introduced the first citation index for papers published in academic journals, first the Science Citation Index (SCI), and later the Social Sciences Citation Index (SSCI) and the Arts and Humanities Citation Index (AHCI). American Chemical Society converted its printed Chemical Abstract Service into internet-accessible SciFinder in 2008. The first automated citation indexing was done by CiteSeer in 1997 and was patented. Other sources for such data include Google Scholar, Microsoft Academic, Elsevier's Scopus, and the National Institutes of Health's iCite.

A book review is a form of literary criticism in which a book is merely described or analyzed based on content, style, and merit. A book review may be a primary source, opinion piece, summary review or scholarly review. Books can be reviewed for printed periodicals, magazines and newspapers, as school work, or for book websites on the Internet. A book review's length may vary from a single paragraph to a substantial essay. Such a review may evaluate the book on the basis of personal taste. Reviewers may use the occasion of a book review for an extended essay that can be closely or loosely related to the subject of the book, or to promulgate their own ideas on the topic of a fiction or non-fiction work.

<span class="mw-page-title-main">Bibliometrics</span> Statistical analysis of written publications

Bibliometrics is the use of statistical methods to analyse books, articles and other publications, especially in scientific contents. Bibliometric methods are frequently used in the field of library and information science. Bibliometrics is closely associated with scientometrics, the analysis of scientific metrics and indicators, to the point that both fields largely overlap.

Scientometrics is the field of study which concerns itself with measuring and analysing scholarly literature. Scientometrics is a sub-field of informetrics. Major research issues include the measurement of the impact of research papers and academic journals, the understanding of scientific citations, and the use of such measurements in policy and management contexts. In practice there is a significant overlap between scientometrics and other scientific fields such as information systems, information science, science of science policy, sociology of science, and metascience. Critics have argued that over-reliance on scientometrics has created a system of perverse incentives, producing a publish or perish environment that leads to low-quality research.

Citation analysis is the examination of the frequency, patterns, and graphs of citations in documents. It uses the directed graph of citations — links from one document to another document — to reveal properties of the documents. A typical aim would be to identify the most important documents in a collection. A classic example is that of the citations between academic articles and books. For another example, judges of law support their judgements by referring back to judgements made in earlier cases. An additional example is provided by patents which contain prior art, citation of earlier patents relevant to the current claim. The digitization of patent data and increasing computing power have led to a community of practice that uses these citation data to measure innovation attributes, trace knowledge flows, and map innovation networks.

<span class="mw-page-title-main">Academic writing</span> Writing resulting from academic work

Academic writing or scholarly writing is nonfiction writing produced as part of academic work in accordance with the standards and disciplines of each academic subject, including:

<span class="mw-page-title-main">Informetrics</span> Study of the quantitative aspects of information

Informetrics is the study of quantitative aspects of information, it is an extension and evolution of traditional bibliometrics and scientometrics. Informetrics uses bibliometrics and scientometrics methods to study mainly the problems of literature information management and evaluation of science and technology. Informetrics is an independent discipline that uses quantitative methods from mathematics and statistics to study the process, phenomena, and law of informetrics. Informetrics has gained more attention as it is a common scientific method for academic evaluation, research hotspots in discipline, and trend analysis.

Transdisciplinarity connotes a research strategy that crosses disciplinary boundaries to create a holistic approach. It applies to research efforts focused on problems that cross the boundaries of two or more disciplines, such as research on effective information systems for biomedical research, and can refer to concepts or methods that were originally developed by one discipline, but are now used by several others, such as ethnography, a field research method originally developed in anthropology but now widely used by other disciplines. The Belmont Forum elaborated that a transdisciplinary approach is enabling inputs and scoping across scientific and non-scientific stakeholder communities and facilitating a systemic way of addressing a challenge. This includes initiatives that support the capacity building required for the successful transdisciplinary formulation and implementation of research actions.

Citation impact or citation rate is a measure of how many times an academic journal article or book or author is cited by other articles, books or authors. Citation counts are interpreted as measures of the impact or influence of academic work and have given rise to the field of bibliometrics or scientometrics, specializing in the study of patterns of academic impact through citation analysis. The importance of journals can be measured by the average citation rate, the ratio of number of citations to number articles published within a given time period and in a given index, such as the journal impact factor or the citescore. It is used by academic institutions in decisions about academic tenure, promotion and hiring, and hence also used by authors in deciding which journal to publish in. Citation-like measures are also used in other fields that do ranking, such as Google's PageRank algorithm, software metrics, college and university rankings, and business performance indicators.

The h-index is an author-level metric that measures both the productivity and citation impact of the publications, initially used for an individual scientist or scholar. The h-index correlates with success indicators such as winning the Nobel Prize, being accepted for research fellowships and holding positions at top universities. The index is based on the set of the scientist's most cited papers and the number of citations that they have received in other publications. The index has more recently been applied to the productivity and impact of a scholarly journal as well as a group of scientists, such as a department or university or country. The index was suggested in 2005 by Jorge E. Hirsch, a physicist at UC San Diego, as a tool for determining theoretical physicists' relative quality and is sometimes called the Hirsch index or Hirsch number.

The term interdiscipline or inter-discipline means an organizational unit that involves two or more academic disciplines, but which have the formal criteria of disciplines such as dedicated research journals, conferences and university departments. It is related to interdisciplinarity, but it is a noun used for a certain kind of unit. As shown in the example of demography below a field may be both a discipline and an interdiscipline at the same time. The example of information science demonstrates that a field may be regarded as a discipline in some countries but an interdiscipline in other countries.

<span class="mw-page-title-main">Social Sciences Citation Index</span> Citation index product of Clarivate Analytics

The Social Sciences Citation Index (SSCI) is a commercial citation index product of Clarivate Analytics. It was originally developed by the Institute for Scientific Information from the Science Citation Index. The Social Sciences Citation Index is a multidisciplinary index which indexes over 3,400 journals across 58 social science disciplines – 1985 to present, and it has 122 million cited references – 1900 to present. It also includes a range of 3,500 selected items from some of the world's finest scientific and technical journals. It has a range of useful search functions such as 'cited reference searching', searching by author, subject, or title. Whilst the Social Sciences Citation Index provides extensive support in bibliographic analytics and research, a number of academic scholars have expressed criticisms relating to ideological bias and its English-dominant publishing nature.

<span class="mw-page-title-main">Childhood studies</span>

Childhood studies or children's studies (CS) is a multidisciplinary field that seeks to understand the experience of childhood, both historically and in the contemporary world. CS views childhood as a complex social phenomenon with an emphasis on children's agency as social actors, and acknowledges that childhood is socially constructed as the concept of childhood is not universal. CS draws on scholarship in the social sciences, the humanities, and the behavioral sciences.

The following outline is provided as an overview of and topical guide to information science:

The concept of team science is a field of scientific philosophy and methodology which advocates using cross-disciplinary collaboration from diverse scientific fields to solve present-day problems. The field encompasses conceptual and methodological strategies aimed at understanding and enhancing the processes and outcomes of collaborative, team-based research.

Within academia, the history of knowledge is the field covering the accumulated and known human knowledge created or discovered during human history and its historic forms, focus, accumulation, bearers, impacts, mediations, distribution, applications, societal contexts, conditions and methods of production. It is related to, yet separate from, the history of science, the history of scholarship and the history of philosophy. The scope of the history of knowledge encompass all the discovered and created fields of human-derived knowledge such as logic, philosophy, mathematics, science, sociology, psychology and data mining.

Julie Thompson Klein was a professor and scholar in the field of Interdisciplinary Studies at Wayne State University. Klein was widely known as a pioneer in interdisciplinary education, and had consulted widely in academic and other settings in the field. In 2016, she was a speaker at the Centennial Symposium of the Association of American Colleges and Universities. During her 36 years at Wayne state, her publications had been heavily cited.

There are a number of approaches to ranking academic publishing groups and publishers. Rankings rely on subjective impressions by the scholarly community, on analyses of prize winners of scientific associations, discipline, a publisher's reputation, and its impact factor.

The Leiden Manifesto for research metrics (LM) is a list of "ten principles to guide research evaluation", published as a comment in Volume 520, Issue 7548 of Nature, on 22 April 2015. It was formulated by public policy professor Diana Hicks, scientometrics professor Paul Wouters, and their colleagues at the 19th International Conference on Science and Technology Indicators, held between 3–5 September 2014 in Leiden, The Netherlands.

References

  1. Gibbons, Michael; Camille Limoges, Helga Nowotny, Simon Schwartzman, Peter Scott, & Martin Trow (1994). The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies. London: Sage.
  2. Ziman, John (2000). Real Science: What It Is, and What It Means. Cambridge: Cambridge University Press.
  3. History of Education, Encyclopædia Britannica (1977, 15th edition), Macropaedia Volume 6, p. 337
  4. Jacques Revel (2003). "History and the Social Sciences". In Porter, Theodore; Ross, Dorothy (eds.). Cambridge History of Science: The Modern Social Sciences, Vol. 5 . Cambridge: Cambridge University Press. pp.  391–404. ISBN   0521594421.
  5. "How The Word 'Scientist' Came To Be". National Public Radio. Archived from the original on November 3, 2014. Retrieved November 3, 2014.
  6. Cohen, E; Lloyd, S. "Disciplinary Evolution and the Rise of Transdiscipline" (PDF). Informing Science: the International Journal of an Emerging Transdiscipline. Archived (PDF) from the original on March 27, 2022. Retrieved November 3, 2014.
  7. Foucault, Michel (1977). Discipline and Punish: The birth of the prison. Trans. Alan Sheridan. New York: Vintage. (Translation of: Surveiller et punir; naissance de la prison. [Paris] : Gallimard, 1975).
  8. "McLuhan: Understanding Media". Understanding Media . 1964. p. 13. Archived from the original on December 8, 2008.
  9. Lindholm-Romantschuk, Y. (1998). Scholarly book reviewing in the social sciences and humanities. The flow of ideas within and among disciplines. Westport, Connecticut: Greenwood Press.
  10. Ohlsson, H. (1999). Is there a Scandinavian psychology? A bibliometric note on the publication profiles of Denmark, Finland, Norway, and Sweden. Scandinavian Journal of Psychology, 40, 235–39.
  11. Serenko, A. & Bontis, N. (2013). The intellectual core and impact of the knowledge management academic discipline. Archived December 10, 2015, at the Wayback Machine Journal of Knowledge Management, 17(1), 137–55.
  12. "Bibliometrics | The Guidelines project". www.guidelines.kaowarsom.be. Archived from the original on July 5, 2018. Retrieved July 5, 2018.

Further reading