Last updated

EscherichiaColi NIAID.jpg
Thompson's Gazelle.jpeg
Goliath beetle.jpg
Tree Fern.jpg
Biology deals with the study of life and organisms.
<i>Escherichia coli</i> species of Gram-negative, rod-shaped bacterium

Escherichia coli, also known as E. coli, is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in the lower intestine of warm-blooded organisms (endotherms). Most E. coli strains are harmless, but some serotypes can cause serious food poisoning in their hosts, and are occasionally responsible for product recalls due to food contamination. The harmless strains are part of the normal microbiota of the gut, and can benefit their hosts by producing vitamin K2, and preventing colonization of the intestine with pathogenic bacteria, having a symbiotic relationship. E. coli is expelled into the environment within fecal matter. The bacterium grows massively in fresh fecal matter under aerobic conditions for 3 days, but its numbers decline slowly afterwards.

Gazelle Genus of mammals

A gazelle is any of many antelope species in the genus Gazella. This article also deals with the six species included in two further genera, Eudorcas and Nanger, which were formerly considered subgenera of Gazella. A third former subgenus, Procapra, includes three living species of Asian gazelles.

<i>Goliathus</i> genus of insects

The Goliath beetles are any of the five species in the genus Goliathus. Goliath beetles are among the largest insects on Earth, if measured in terms of size, bulk and weight. They are members of subfamily Cetoniinae, within the family Scarabaeidae. Goliath beetles can be found in many of Africa's tropical forests, where they feed primarily on tree sap and fruit. Little appears to be known of the larval cycle in the wild, but in captivity, Goliathus beetles have been successfully reared from egg to adult using protein-rich foods such as commercial cat and dog food. Goliath beetles measure from 60–110 millimetres (2.4–4.3 in) for males and 50–80 millimetres (2.0–3.1 in) for females, as adults, and can reach weights of up to 80–100 grams (2.8–3.5 oz) in the larval stage, though the adults are only about half this weight. The females range from a dark brown to silky white, but the males are normally brown/white/black or black/white.

Biology is the natural science that studies life and living organisms, including their physical structure, chemical processes, molecular interactions, physiological mechanisms, development and evolution. [1] Despite the complexity of the science, there are certain unifying concepts that consolidate it into a single, coherent field. Biology recognizes the cell as the basic unit of life, genes as the basic unit of heredity, and evolution as the engine that propels the creation and extinction of species. Living organisms are open systems that survive by transforming energy and decreasing their local entropy [2] to maintain a stable and vital condition defined as homeostasis. [3]

Natural science Branch of science about the natural world

Natural science is a branch of science concerned with the description, prediction, and understanding of natural phenomena, based on empirical evidence from observation and experimentation. Mechanisms such as peer review and repeatability of findings are used to try to ensure the validity of scientific advances.

Life Characteristic that distinguishes physical entities having biological processes

Life is a characteristic that distinguishes physical entities that have biological processes, such as signaling and self-sustaining processes, from those that do not, either because such functions have ceased, or because they never had such functions and are classified as inanimate. Various forms of life exist, such as plants, animals, fungi, protists, archaea, and bacteria. The criteria can at times be ambiguous and may or may not define viruses, viroids, or potential synthetic life as "living". Biology is the science concerned with the study of life.

Organism Any individual living physical entity

In biology, an organism is any individual entity that exhibits the properties of life. It is a synonym for "life form".


Sub-disciplines of biology are defined by the research methods employed and the kind of system studied: theoretical biology uses mathematical methods to formulate quantitative models while experimental biology performs empirical experiments to test the validity of proposed theories and understand the mechanisms underlying life and how it appeared and evolved from non-living matter about 4 billion years ago through a gradual increase in the complexity of the system. [4] [5] [6] See branches of biology.

Mathematical and theoretical biology

Mathematical and theoretical biology is a branch of biology which employs theoretical analysis, mathematical models and abstractions of the living organisms to investigate the principles that govern the structure, development and behavior of the systems, as opposed to experimental biology which deals with the conduction of experiments to prove and validate the scientific theories. The field is sometimes called mathematical biology or biomathematics to stress the mathematical side, or theoretical biology to stress the biological side. Theoretical biology focuses more on the development of theoretical principles for biology while mathematical biology focuses on the use of mathematical tools to study biological systems, even though the two terms are sometimes interchanged.

Experimental biology is the set of approaches in the field of biology concerned with the conduction of experiments to investigate and understand biological phenomena. The term is opposed to theoretical biology which is concerned with the mathematical modelling and abstractions of the biological systems. Due to the complexity of the investigated systems, biology is primarily an experimental science. However, as a consequence of the modern increase in computational power, it is now becoming more feasible to find approximate solutions and validate mathematical models of complex living organisms.

Abiogenesis The natural process by which life arises from non-living matter

Abiogenesis, or informally the origin of life, is the natural process by which life has arisen from non-living matter, such as simple organic compounds. While the details of this process are still unknown, the prevailing scientific hypothesis is that the transition from non-living to living entities was not a single event, but a gradual process of increasing complexity that involved molecular self-replication, self-assembly, autocatalysis, and the emergence of cell membranes. Although the occurrence of abiogenesis is uncontroversial among scientists, there is no single, generally accepted model for the origin of life, and this article presents several principles and hypotheses for how abiogenesis could have occurred.


A Diagram of a fly from Robert Hooke's innovative Micrographia, 1665 Hooke-bluefly.jpg
A Diagram of a fly from Robert Hooke's innovative Micrographia, 1665
Ernst Haeckel's Tree of Life (1879) Tree of life by Haeckel.jpg
Ernst Haeckel's Tree of Life (1879)

The term biology is derived from the Greek word βίος , bios, "life" and the suffix -λογία , -logia, "study of." [7] [8] The Latin-language form of the term first appeared in 1736 when Swedish scientist Carl Linnaeus (Carl von Linné) used biologi in his Bibliotheca botanica. It was used again in 1766 in a work entitled Philosophiae naturalis sive physicae: tomus III, continens geologian, biologian, phytologian generalis, by Michael Christoph Hanov, a disciple of Christian Wolff. The first German use, Biologie, was in a 1771 translation of Linnaeus' work. In 1797, Theodor Georg August Roose used the term in the preface of a book, Grundzüge der Lehre van der Lebenskraft. Karl Friedrich Burdach used the term in 1800 in a more restricted sense of the study of human beings from a morphological, physiological and psychological perspective (Propädeutik zum Studien der gesammten Heilkunst). The term came into its modern usage with the six-volume treatise Biologie, oder Philosophie der lebenden Natur (1802–22) by Gottfried Reinhold Treviranus, who announced: [9]

Carl Linnaeus Swedish botanist, physician, and zoologist

Carl Linnaeus, also known after his ennoblement as Carl von Linné, was a Swedish botanist, physician, and zoologist who formalised binomial nomenclature, the modern system of naming organisms. He is known as the "father of modern taxonomy". Many of his writings were in Latin, and his name is rendered in Latin as Carolus Linnæus.

Michael Christoph Hanow was a German meteorologist, historian, professor of mathematics and since 1717 rector of the Academic Gymnasium Danzig.

Christian Wolff (philosopher) German philosopher

Christian Wolff was a German philosopher. Wolff was the most eminent German philosopher between Leibniz and Kant. His main achievement was a complete oeuvre on almost every scholarly subject of his time, displayed and unfolded according to his demonstrative-deductive, mathematical method, which perhaps represents the peak of Enlightenment rationality in Germany.

The objects of our research will be the different forms and manifestations of life, the conditions and laws under which these phenomena occur, and the causes through which they have been effected. The science that concerns itself with these objects we will indicate by the name biology [Biologie] or the doctrine of life [Lebenslehre].

Although modern biology is a relatively recent development, sciences related to and included within it have been studied since ancient times. Natural philosophy was studied as early as the ancient civilizations of Mesopotamia, Egypt, the Indian subcontinent, and China. However, the origins of modern biology and its approach to the study of nature are most often traced back to ancient Greece. [10] [11] While the formal study of medicine dates back to Hippocrates (ca. 460–370 BC), it was Aristotle (384–322 BC) who contributed most extensively to the development of biology. Especially important are his History of Animals and other works where he showed naturalist leanings, and later more empirical works that focused on biological causation and the diversity of life. Aristotle's successor at the Lyceum, Theophrastus, wrote a series of books on botany that survived as the most important contribution of antiquity to the plant sciences, even into the Middle Ages. [12]

Natural philosophy ancient philosophical study of nature and physical universe that was dominant before the development of modern science. It is considered to be the precursor of natural science

Natural philosophy or philosophy of nature was the philosophical study of nature and the physical universe that was dominant before the development of modern science. It is considered to be the precursor of natural science.

Mesopotamia Historical region within the Tigris–Euphrates river system

Mesopotamia is a historical region of Western Asia situated within the Tigris–Euphrates river system, in modern days roughly corresponding to most of Iraq, Kuwait, parts of Northern Saudi Arabia, the eastern parts of Syria, Southeastern Turkey, and regions along the Turkish–Syrian and Iran–Iraq borders.

Egypt Country spanning North Africa and Southwest Asia

Egypt, officially the Arab Republic of Egypt, is a country spanning the northeast corner of Africa and southwest corner of Asia by a land bridge formed by the Sinai Peninsula. Egypt is a Mediterranean country bordered by the Gaza Strip and Israel to the northeast, the Gulf of Aqaba and the Red Sea to the east, Sudan to the south, and Libya to the west. Across the Gulf of Aqaba lies Jordan, across the Red Sea lies Saudi Arabia, and across the Mediterranean lie Greece, Turkey and Cyprus, although none share a land border with Egypt.

Scholars of the medieval Islamic world who wrote on biology included al-Jahiz (781–869), Al-Dīnawarī (828–896), who wrote on botany, [13] and Rhazes (865–925) who wrote on anatomy and physiology. Medicine was especially well studied by Islamic scholars working in Greek philosopher traditions, while natural history drew heavily on Aristotelian thought, especially in upholding a fixed hierarchy of life.

Science in the medieval Islamic world

Science in the medieval Islamic world was the science developed and practised during the Islamic Golden Age under the Umayyads of Córdoba, the Abbadids of Seville, the Samanids, the Ziyarids, the Buyids in Persia, the Abbasid Caliphate and beyond, spanning the period c. 800 to 1250. Islamic scientific achievements encompassed a wide range of subject areas, especially astronomy, mathematics, and medicine. Other subjects of scientific inquiry included alchemy and chemistry, botany, geography and cartography, ophthalmology, pharmacology, physics, and zoology.

Al-Jahiz Arabic writer

al-Jāḥiẓ was an Arab prose writer and author of works of literature, Mu'tazili theology, and politico-religious polemics.

Anatomy The study of the structure of organisms and their parts

Anatomy is the branch of biology concerned with the study of the structure of organisms and their parts. Anatomy is a branch of natural science which deals with the structural organization of living things. It is an old science, having its beginnings in prehistoric times. Anatomy is inherently tied to developmental biology, embryology, comparative anatomy, evolutionary biology, and phylogeny, as these are the processes by which anatomy is generated over immediate (embryology) and long (evolution) timescales. Anatomy and physiology, which study (respectively) the structure and function of organisms and their parts, make a natural pair of related disciplines, and they are often studied together. Human anatomy is one of the essential basic sciences that are applied in medicine.

Biology began to quickly develop and grow with Anton van Leeuwenhoek's dramatic improvement of the microscope. It was then that scholars discovered spermatozoa, bacteria, infusoria and the diversity of microscopic life. Investigations by Jan Swammerdam led to new interest in entomology and helped to develop the basic techniques of microscopic dissection and staining. [14]

Advances in microscopy also had a profound impact on biological thinking. In the early 19th century, a number of biologists pointed to the central importance of the cell. Then, in 1838, Schleiden and Schwann began promoting the now universal ideas that (1) the basic unit of organisms is the cell and (2) that individual cells have all the characteristics of life, although they opposed the idea that (3) all cells come from the division of other cells. Thanks to the work of Robert Remak and Rudolf Virchow, however, by the 1860s most biologists accepted all three tenets of what came to be known as cell theory. [15] [16]

Meanwhile, taxonomy and classification became the focus of natural historians. Carl Linnaeus published a basic taxonomy for the natural world in 1735 (variations of which have been in use ever since), and in the 1750s introduced scientific names for all his species. [17] Georges-Louis Leclerc, Comte de Buffon, treated species as artificial categories and living forms as malleable—even suggesting the possibility of common descent. Although he was opposed to evolution, Buffon is a key figure in the history of evolutionary thought; his work influenced the evolutionary theories of both Lamarck and Darwin. [18]

Serious evolutionary thinking originated with the works of Jean-Baptiste Lamarck, who was the first to present a coherent theory of evolution. [19] He posited that evolution was the result of environmental stress on properties of animals, meaning that the more frequently and rigorously an organ was used, the more complex and efficient it would become, thus adapting the animal to its environment. Lamarck believed that these acquired traits could then be passed on to the animal's offspring, who would further develop and perfect them. [20] However, it was the British naturalist Charles Darwin, combining the biogeographical approach of Humboldt, the uniformitarian geology of Lyell, Malthus's writings on population growth, and his own morphological expertise and extensive natural observations, who forged a more successful evolutionary theory based on natural selection; similar reasoning and evidence led Alfred Russel Wallace to independently reach the same conclusions. [21] [22] Although it was the subject of controversy (which continues to this day), Darwin's theory quickly spread through the scientific community and soon became a central axiom of the rapidly developing science of biology.

The discovery of the physical representation of heredity came along with evolutionary principles and population genetics. In the 1940s and early 1950s, experiments pointed to DNA as the component of chromosomes that held the trait-carrying units that had become known as genes. A focus on new kinds of model organisms such as viruses and bacteria, along with the discovery of the double helical structure of DNA in 1953, marked the transition to the era of molecular genetics. From the 1950s to present times, biology has been vastly extended in the molecular domain. The genetic code was cracked by Har Gobind Khorana, Robert W. Holley and Marshall Warren Nirenberg after DNA was understood to contain codons. Finally, the Human Genome Project was launched in 1990 with the goal of mapping the general human genome. This project was essentially completed in 2003, [23] with further analysis still being published. The Human Genome Project was the first step in a globalized effort to incorporate accumulated knowledge of biology into a functional, molecular definition of the human body and the bodies of other organisms.

Foundations of modern biology

Cell theory

Human cancer cells with nuclei (specifically the DNA) stained blue. The central and rightmost cell are in interphase, so the entire nuclei are labeled. The cell on the left is going through mitosis and its DNA has condensed. HeLa Hoechst 33258.jpg
Human cancer cells with nuclei (specifically the DNA) stained blue. The central and rightmost cell are in interphase, so the entire nuclei are labeled. The cell on the left is going through mitosis and its DNA has condensed.

Cell theory states that the cell is the fundamental unit of life, that all living things are composed of one or more cells, and that all cells arise from pre-existing cells through cell division. In multicellular organisms, every cell in the organism's body derives ultimately from a single cell in a fertilized egg. The cell is also considered to be the basic unit in many pathological processes. [24] In addition, the phenomenon of energy flow occurs in cells in processes that are part of the function known as metabolism. Finally, cells contain hereditary information (DNA), which is passed from cell to cell during cell division. Research into the origin of life, abiogenesis, amounts to an attempt to discover the origin of the first cells.


Natural selection of a population for dark coloration. Mutation and selection diagram.svg
Natural selection of a population for dark coloration.

A central organizing concept in biology is that life changes and develops through evolution, and that all life-forms known have a common origin. The theory of evolution postulates that all organisms on the Earth, both living and extinct, have descended from a common ancestor or an ancestral gene pool. This universal common ancestor of all organisms is believed to have appeared about 3.5 billion years ago. [25] Biologists regard the ubiquity of the genetic code as definitive evidence in favor of the theory of universal common descent for all bacteria, archaea, and eukaryotes (see: origin of life). [26]

The term "evolution" was introduced into the scientific lexicon by Jean-Baptiste de Lamarck in 1809, [27] and fifty years later Charles Darwin posited a scientific model of natural selection as evolution's driving force. [28] [29] [30] (Alfred Russel Wallace is recognized as the co-discoverer of this concept as he helped research and experiment with the concept of evolution.) [31] Evolution is now used to explain the great variations of life found on Earth.

Darwin theorized that species flourish or die when subjected to the processes of natural selection or selective breeding. [32] Genetic drift was embraced as an additional mechanism of evolutionary development in the modern synthesis of the theory. [33]

The evolutionary history of the species—which describes the characteristics of the various species from which it descended—together with its genealogical relationship to every other species is known as its phylogeny. Widely varied approaches to biology generate information about phylogeny. These include the comparisons of DNA sequences, a product of molecular biology (more particularly genomics), and comparisons of fossils or other records of ancient organisms, a product of paleontology. [34] Biologists organize and analyze evolutionary relationships through various methods, including phylogenetics, phenetics, and cladistics. (For a summary of major events in the evolution of life as currently understood by biologists, see evolutionary timeline.)

Evolution is relevant to the understanding of the natural history of life forms and to the understanding of the organization of current life forms. But, those organizations can only be understood in the light of how they came to be by way of the process of evolution. Consequently, evolution is central to all fields of biology. [35]


A Punnett square depicting a cross between two pea plants heterozygous for purple (B) and white (b) blossoms Punnett square mendel flowers.svg
A Punnett square depicting a cross between two pea plants heterozygous for purple (B) and white (b) blossoms

Genes are the primary units of inheritance in all organisms. A gene is a unit of heredity and corresponds to a region of DNA that influences the form or function of an organism in specific ways. All organisms, from bacteria to animals, share the same basic machinery that copies and translates DNA into proteins. Cells transcribe a DNA gene into an RNA version of the gene, and a ribosome then translates the RNA into a sequence of amino acids known as a protein. The translation code from RNA codon to amino acid is the same for most organisms. For example, a sequence of DNA that codes for insulin in humans also codes for insulin when inserted into other organisms, such as plants. [36]

DNA is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. A chromosome is an organized structure consisting of DNA and histones. The set of chromosomes in a cell and any other hereditary information found in the mitochondria, chloroplasts, or other locations is collectively known as a cell's genome. In eukaryotes, genomic DNA is localized in the cell nucleus, or with small amounts in mitochondria and chloroplasts. In prokaryotes, the DNA is held within an irregularly shaped body in the cytoplasm called the nucleoid. [37] The genetic information in a genome is held within genes, and the complete assemblage of this information in an organism is called its genotype. [38]


The hypothalamus secretes CRH, which directs the pituitary gland to secrete ACTH. In turn, ACTH directs the adrenal cortex to secrete glucocorticoids, such as cortisol. The GCs then reduce the rate of secretion by the hypothalamus and the pituitary gland once a sufficient amount of GCs has been released. ACTH Negative Feedback.svg
The hypothalamus secretes CRH, which directs the pituitary gland to secrete ACTH. In turn, ACTH directs the adrenal cortex to secrete glucocorticoids, such as cortisol. The GCs then reduce the rate of secretion by the hypothalamus and the pituitary gland once a sufficient amount of GCs has been released.

Homeostasis is the ability of an open system to regulate its internal environment to maintain stable conditions by means of multiple dynamic equilibrium adjustments that are controlled by interrelated regulation mechanisms. All living organisms, whether unicellular or multicellular, exhibit homeostasis. [40]

To maintain dynamic equilibrium and effectively carry out certain functions, a system must detect and respond to perturbations. After the detection of a perturbation, a biological system normally responds through negative feedback that stabilize conditions by reducing or increasing the activity of an organ or system. One example is the release of glucagon when sugar levels are too low.

Basic overview of energy and human life. Energy and life.svg
Basic overview of energy and human life.


The survival of a living organism depends on the continuous input of energy. Chemical reactions that are responsible for its structure and function are tuned to extract energy from substances that act as its food and transform them to help form new cells and sustain them. In this process, molecules of chemical substances that constitute food play two roles; first, they contain energy that can be transformed and reused in that organism's biological, chemical reactions; second, food can be transformed into new molecular structures (biomolecules) that are of use to that organism.

The organisms responsible for the introduction of energy into an ecosystem are known as producers or autotrophs. Nearly all such organisms originally draw their energy from the sun. [41] Plants and other phototrophs use solar energy via a process known as photosynthesis to convert raw materials into organic molecules, such as ATP, whose bonds can be broken to release energy. [42] A few ecosystems, however, depend entirely on energy extracted by chemotrophs from methane, sulfides, or other non-luminal energy sources. [43]

Some of the energy thus captured produces biomass and energy that is available for growth and development of other life forms. The majority of the rest of this biomass and energy are lost as waste molecules and heat. The most important processes for converting the energy trapped in chemical substances into energy useful to sustain life are metabolism [44] and cellular respiration. [45]

Study and research


Schematic of typical animal cell depicting the various organelles and structures. Biological cell.svg
Schematic of typical animal cell depicting the various organelles and structures.

Molecular biology is the study of biology at the molecular level. [46] This field overlaps with other areas of biology, particularly those of genetics and biochemistry. Molecular biology is a study of the interactions of the various systems within a cell, including the interrelationships of DNA, RNA, and protein synthesis and how those interactions are regulated.

The next larger scale, cell biology, studies the structural and physiological properties of cells, including their internal behavior, interactions with other cells, and with their environment. This is done on both the microscopic and molecular levels, for unicellular organisms such as bacteria, as well as the specialized cells of multicellular organisms such as humans. Understanding the structure and function of cells is fundamental to all of the biological sciences. The similarities and differences between cell types are particularly relevant to molecular biology.

Anatomy is a treatment of the macroscopic forms of such structures organs and organ systems. [47]

Genetics is the science of genes, heredity, and the variation of organisms. [48] [49] Genes encode the information needed by cells for the synthesis of proteins, which in turn play a central role in influencing the final phenotype of the organism. Genetics provides research tools used in the investigation of the function of a particular gene, or the analysis of genetic interactions. Within organisms, genetic information is physically represented as chromosomes, within which it is represented by a particular sequence of amino acids in particular DNA molecules.

Developmental biology studies the process by which organisms grow and develop. Developmental biology, originated from embryology, studies the genetic control of cell growth, cellular differentiation, and "cellular morphogenesis," which is the process that progressively gives rise to tissues, organs, and anatomy. Model organisms for developmental biology include the round worm Caenorhabditis elegans, [50] the fruit fly Drosophila melanogaster, [51] the zebrafish Danio rerio, [52] the mouse Mus musculus , [53] and the weed Arabidopsis thaliana . [54] [55] (A model organism is a species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in that organism provide insight into the workings of other organisms.) [56]


Physiology is the study of the mechanical, physical, and biochemical processes of living organisms function as a whole. The theme of "structure to function" is central to biology. Physiological studies have traditionally been divided into plant physiology and animal physiology, but some principles of physiology are universal, no matter what particular organism is being studied. For example, what is learned about the physiology of yeast cells can also apply to human cells. The field of animal physiology extends the tools and methods of human physiology to non-human species. Plant physiology borrows techniques from both research fields.

Physiology is the study the interaction of how, for example, the nervous, immune, endocrine, respiratory, and circulatory systems, function and interact. The study of these systems is shared with such medically oriented disciplines as neurology and immunology.


Evolutionary research is concerned with the origin and descent of species, and their change over time. It employs scientists from many taxonomically oriented disciplines, for example, those with special training in particular organisms such as mammalogy, ornithology, botany, or herpetology, but are of use in answering more general questions about evolution.

Evolutionary biology is partly based on paleontology, which uses the fossil record to answer questions about the mode and tempo of evolution, [57] and partly on the developments in areas such as population genetics. [58] In the 1980s, developmental biology re-entered evolutionary biology after its initial exclusion from the modern synthesis through the study of evolutionary developmental biology. [59] Phylogenetics, systematics, and taxonomy are related fields often considered part of evolutionary biology.


BacteriaArchaeaEucaryotaAquifexThermotogaCytophagaBacteroidesBacteroides-CytophagaPlanctomycesCyanobacteriaProteobacteriaSpirochetesGram-positive bacteriaGreen filantous bacteriaPyrodicticumThermoproteusThermococcus celerMethanococcusMethanobacteriumMethanosarcinaHalophilesEntamoebaeSlime moldAnimalFungusPlantCiliateFlagellateTrichomonadMicrosporidiaDiplomonadBiology
A phylogenetic tree of all living things, based on rRNA gene data, showing the separation of the three domains bacteria, archaea, and eukaryotes as described initially by Carl Woese. Trees constructed with other genes are generally similar, although they may place some early-branching groups very differently, presumably owing to rapid rRNA evolution. The exact relationships of the three domains are still being debated.
The hierarchy of biological classification's eight major taxonomic ranks. Intermediate minor rankings are not shown. This diagram uses a 3 Domains / 6 Kingdoms format Biological classification L Pengo.svg
The hierarchy of biological classification's eight major taxonomic ranks. Intermediate minor rankings are not shown. This diagram uses a 3 Domains / 6 Kingdoms format

Multiple speciation events create a tree structured system of relationships between species. The role of systematics is to study these relationships and thus the differences and similarities between species and groups of species. [60] However, systematics was an active field of research long before evolutionary thinking was common. [61]

Traditionally, living things have been divided into five kingdoms: Monera; Protista; Fungi; Plantae; Animalia. [62] However, many scientists now consider this five-kingdom system outdated. Modern alternative classification systems generally begin with the three-domain system: Archaea (originally Archaebacteria); Bacteria (originally Eubacteria) and Eukaryota (including protists, fungi, plants, and animals). [63] These domains reflect whether the cells have nuclei or not, as well as differences in the chemical composition of key biomolecules such as ribosomes. [63]

Further, each kingdom is broken down recursively until each species is separately classified. The order is: Domain; Kingdom; Phylum; Class; Order; Family; Genus; Species.

Outside of these categories, there are obligate intracellular parasites that are "on the edge of life" [64] in terms of metabolic activity, meaning that many scientists do not actually classify such structures as alive, due to their lack of at least one or more of the fundamental functions or characteristics that define life. They are classified as viruses, viroids, prions, or satellites.

The scientific name of an organism is generated from its genus and species. For example, humans are listed as Homo sapiens . Homo is the genus, and sapiens the species. When writing the scientific name of an organism, it is proper to capitalize the first letter in the genus and put all of the species in lowercase. [65] Additionally, the entire term may be italicized or underlined. [66]

The dominant classification system is called the Linnaean taxonomy. It includes ranks and binomial nomenclature. How organisms are named is governed by international agreements such as the International Code of Nomenclature for algae, fungi, and plants (ICN), the International Code of Zoological Nomenclature (ICZN), and the International Code of Nomenclature of Bacteria (ICNB). The classification of viruses, viroids, prions, and all other sub-viral agents that demonstrate biological characteristics is conducted by the International Committee on Taxonomy of Viruses (ICTV) and is known as the International Code of Viral Classification and Nomenclature (ICVCN). [67] [68] [69] [70] However, several other viral classification systems do exist.

A merging draft, BioCode, was published in 1997 in an attempt to standardize nomenclature in these three areas, but has yet to be formally adopted. [71] The BioCode draft has received little attention since 1997; its originally planned implementation date of January 1, 2000, has passed unnoticed. A revised BioCode that, instead of replacing the existing codes, would provide a unified context for them, was proposed in 2011. [72] [73] [74] However, the International Botanical Congress of 2011 declined to consider the BioCode proposal. The ICVCN remains outside the BioCode, which does not include viral classification.


Ecological and environmental

Mutual symbiosis between clownfish of the genus Amphiprion that dwell among the tentacles of tropical sea anemones. The territorial fish protects the anemone from anemone-eating fish, and in turn the stinging tentacles of the anemone protects the clown fish from its predators. Common clownfish.jpg
Mutual symbiosis between clownfish of the genus Amphiprion that dwell among the tentacles of tropical sea anemones. The territorial fish protects the anemone from anemone-eating fish, and in turn the stinging tentacles of the anemone protects the clown fish from its predators.

Ecology is the study of the distribution and abundance of living organisms, the interaction between them and their environment. [75] An organism shares an environment that includes other organisms and biotic factors as well as local abiotic factors (non-living) such as climate and ecology. [76] One reason that biological systems can be difficult to study is that so many different interactions with other organisms and the environment are possible, even on small scales. A microscopic bacterium responding to a local sugar gradient is responding to its environment as much as a lion searching for food in the African savanna. For any species, behaviors can be co-operative, competitive, parasitic, or symbiotic. Matters become more complex when two or more species interact in an ecosystem.

Ecological systems are studied at several different levels, from the scale of the ecology of individual organisms, to those of populations, to the ecosystems and finally the biosphere. The term population biology is often used interchangeably with population ecology, although population biology is more frequently used in the case of diseases, viruses, and microbes, while the term population ecology is more commonly applied to the study of plants and animals. Ecology draws on many subdisciplines.

Ethology is the study of animal behavior (particularly that of social animals such as primates and canids), and is sometimes considered a branch of zoology. Ethologists have been particularly concerned with the evolution of behavior and the understanding of behavior in terms of the theory of natural selection. In one sense, the first modern ethologist was Charles Darwin, whose book, The Expression of the Emotions in Man and Animals, influenced many ethologists to come. [77]

Biogeography studies the spatial distribution of organisms on the Earth, focusing on such topics as plate tectonics, climate change, dispersal and migration, and cladistics.

Basic unresolved problems in biology

Despite the profound advances made over recent decades in our understanding of life's fundamental processes, some basic problems have remained unresolved. One of the major unresolved problems in biology is the primary adaptive function of sex, and particularly its key processes in eukaryotes of meiosis and homologous recombination. One view is that sex evolved primarily as an adaptation that promoted increased genetic diversity (see references e.g. [78] [79] ). An alternative view is that sex is an adaptation for promoting accurate DNA repair in germ-line DNA, and that increased genetic diversity is primarily a byproduct that may be useful in the long run. [80] [81] (See also Evolution of sexual reproduction).

Another basic unresolved problem in biology is the biologic basis of aging. At present, there is no consensus view on the underlying cause of aging. Various competing theories are outlined in Ageing Theories.


These are the main branches of biology: [82] [83] For a more detailed list, see outline of biology.

See also

Related Research Articles

Outline of biology Hierarchical outline list of articles related to biology

Biology – The natural science that involves the study of life and living organisms, including their structure, function, growth, origin, evolution, distribution, and taxonomy.

Evolution Change in the heritable characteristics of biological populations over successive generations

Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes that are passed on from parent to offspring during reproduction. Different characteristics tend to exist within any given population as a result of mutation, genetic recombination and other sources of genetic variation. Evolution occurs when evolutionary processes such as natural selection and genetic drift act on this variation, resulting in certain characteristics becoming more common or rare within a population. It is this process of evolution that has given rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms and molecules.

Genetics Science of genes, heredity, and variation in living organisms

Genetics is a branch of biology concerned with the study of genes, genetic variation, and heredity in organisms.

Heredity passing of traits to offspring from its parents or ancestor

Heredity is the passing on of traits from parents to their offspring, either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic information of their parents. Through heredity, variations between individuals can accumulate and cause species to evolve by natural selection. The study of heredity in biology is genetics.

Molecular biology branch of biology that deals with the molecular basis of biological activity

Molecular biology is a branch of biology that concerns the molecular basis of biological activity between biomolecules in the various systems of a cell, including the interactions between DNA, RNA, proteins and their biosynthesis, as well as the regulation of these interactions. Writing in Nature in 1961, William Astbury described molecular biology as:

...not so much a technique as an approach, an approach from the viewpoint of the so-called basic sciences with the leading idea of searching below the large-scale manifestations of classical biology for the corresponding molecular plan. It is concerned particularly with the forms of biological molecules and [...] is predominantly three-dimensional and structural – which does not mean, however, that it is merely a refinement of morphology. It must at the same time inquire into genesis and function.

Microevolution The change in allele frequencies that occurs over time within a population

Microevolution is the change in allele frequencies that occurs over time within a population. This change is due to four different processes: mutation, selection, gene flow and genetic drift. This change happens over a relatively short amount of time compared to the changes termed macroevolution which is where greater differences in the population occur.

Zoology is the branch of biology that studies the animal kingdom, including the structure, embryology, evolution, classification, habits, and distribution of all animals, both living and extinct, and how they interact with their ecosystems. The term is derived from Ancient Greek ζῷον, zōion, i.e. "animal" and λόγος, logos, i.e. "knowledge, study".

Molecular evolution The process of change in the sequence composition of cellular molecules across generations

Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics to explain patterns in these changes. Major topics in molecular evolution concern the rates and impacts of single nucleotide changes, neutral evolution vs. natural selection, origins of new genes, the genetic nature of complex traits, the genetic basis of speciation, evolution of development, and ways that evolutionary forces influence genomic and phenotypic changes.

Biology is the study of life and its processes. Biologists study all aspects of living things, including all of the many life forms on earth and the processes in them that enable life. These basic processes include the harnessing of energy, the synthesis and duplication of the materials that make up the body, the reproduction of the organism and many other functions. Biology, along with chemistry and physics is one of the major disciplines of natural science.

History of biology History of the study of life from ancient to modern times

The history of biology traces the study of the living world from ancient to modern times. Although the concept of biology as a single coherent field arose in the 19th century, the biological sciences emerged from traditions of medicine and natural history reaching back to ayurveda, ancient Egyptian medicine and the works of Aristotle and Galen in the ancient Greco-Roman world. This ancient work was further developed in the Middle Ages by Muslim physicians and scholars such as Avicenna. During the European Renaissance and early modern period, biological thought was revolutionized in Europe by a renewed interest in empiricism and the discovery of many novel organisms. Prominent in this movement were Vesalius and Harvey, who used experimentation and careful observation in physiology, and naturalists such as Linnaeus and Buffon who began to classify the diversity of life and the fossil record, as well as the development and behavior of organisms. Antonie van Leeuwenhoek revealed by means of microscopy the previously unknown world of microorganisms, laying the groundwork for cell theory. The growing importance of natural theology, partly a response to the rise of mechanical philosophy, encouraged the growth of natural history.

Evolutionary biology Study of the processes that produced the diversity of life

Evolutionary biology is the subfield of biology that studies the evolutionary processes that produced the diversity of life on Earth, starting from a single common ancestor. These processes include natural selection, common descent, and speciation.

Evolution of sexual reproduction How sexually reproducing multicellular organisms could have evolved from a common ancestor species

The evolution of sexual reproduction describes how sexually reproducing animals, plants, fungi and protists could have evolved from a common ancestor that was a single celled eukaryotic species. There are a few species which have secondarily lost the ability to reproduce sexually, such as Bdelloidea, and some plants and animals that routinely reproduce asexually without entirely losing sex. The evolution of sex contains two related, yet distinct, themes: its origin and its maintenance.

Biomedicine is a branch of medical science that applies biological and physiological principles to clinical practice. The branch especially applies to biology and physiology. Biomedicine also can relate to many other categories in health and biological related fields. It has been the dominant health system for more than a century.

Biologist scientist studying living organisms

A biologist is a scientist who has specialized knowledge in the field of biology, the scientific study of life. Biologists involved in fundamental research attempt to explore and further explain the underlying mechanisms that govern the functioning of living matter. Biologists involved in applied research attempt to develop or improve more specific processes and understanding, in fields such as medicine and industry.

Microbial genetics is a subject area within microbiology and genetic engineering. Microbial genetics studies microorganisms for different purposes. The microorganisms that are observed are bacteria, and archaea. Some fungi and protozoa are also subjects used to study in this field. The studies of microorganisms involve studies of genotype and expression system. Genotypes are the inherited compositions of an organism. Genetic Engineering is a field of work and study within microbial genetics. The usage of recombinant DNA technology is a process of this work. The process involves creating recombinant DNA molecules through manipulating a DNA sequence. That DNA created is then in contact with a host organism. Cloning is also an example of genetic engineering.

The following outline is provided as an overview of and topical guide to genetics:

In biology, a species ( ) is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined. While these definitions may seem adequate, when looked at more closely they represent problematic species concepts. For example, the boundaries between closely related species become unclear with hybridisation, in a species complex of hundreds of similar microspecies, and in a ring species. Also, among organisms that reproduce only asexually, the concept of a reproductive species breaks down, and each clone is potentially a microspecies.

Outline of evolution Hierarchical outline list of articles related to evolution

The following outline is provided as an overview of and topical guide to evolution:


  1. Based on definition from: "Aquarena Wetlands Project glossary of terms". Texas State University at San Marcos. Archived from the original on 2004-06-08.
  2. Davies, PC; Rieper, E; Tuszynski, JA (January 2013). "Self-organization and entropy reduction in a living cell". Bio Systems. 111 (1): 1–10. doi:10.1016/j.biosystems.2012.10.005. PMC   3712629 . PMID   23159919.
  3. Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann (December 2015). "A physiologist's view of homeostasis". Advances in Physiology Education. 39 (4): 259–66. doi:10.1152/advan.00107.2015. ISSN   1043-4046. PMC   4669363 . PMID   26628646.
  4. Craig, Nancy (2014). Molecular Biology, Principles of Genome Function. ISBN   978-0-19-965857-2.
  5. Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-François; Vincent Croquette; Bensimon, David (2008). "Some nonlinear challenges in biology". Nonlinearity. 21 (8): T131. Bibcode:2008Nonli..21..131M. doi:10.1088/0951-7715/21/8/T03. ISSN   0951-7715.
  6. Howell, Elizabeth (8 December 2014). "How Did Life Become Complex, And Could It Happen Beyond Earth?". Astrobiology Magazine . Retrieved 14 February 2018.
  7. "Who coined the term biology?". Archived from the original on 2013-05-09. Retrieved 2012-06-03.
  8. "biology". Online Etymology Dictionary. Archived from the original on 2013-03-07.
  9. Richards, Robert J. (2002). The Romantic Conception of Life: Science and Philosophy in the Age of Goethe. University of Chicago Press. ISBN   978-0-226-71210-9.
  10. Magner, Lois N. (2002). A History of the Life Sciences, Revised and Expanded. CRC Press. ISBN   978-0-203-91100-6. Archived from the original on 2015-03-24.
  11. Serafini, Anthony (2013). The Epic History of Biology. ISBN   978-1-4899-6327-7 . Retrieved 14 July 2015.
  12. Wikisource-logo.svg One or more of the preceding sentences incorporates text from a publication now in the public domain : Chisholm, Hugh, ed. (1911). "Theophrastus"  . Encyclopædia Britannica (11th ed.). Cambridge University Press.
  13. Fahd, Toufic (1996). "Botany and agriculture". In Morelon, Régis; Rashed, Roshdi (eds.). Encyclopedia of the History of Arabic Science. 3. Routledge. p. 815. ISBN   978-0-415-12410-2.
  14. Magner, Lois N. (2002). A History of the Life Sciences, Revised and Expanded. CRC Press. pp. 133–44. ISBN   978-0-203-91100-6. Archived from the original on 2015-03-24.
  15. Sapp, Jan (2003). "7". Genesis: The Evolution of Biology. New York.: Oxford University Press. ISBN   978-0-19-515618-8.
  16. Coleman, William (1977). Biology in the Nineteenth Century: Problems of Form, Function, and Transformation. New York: Cambridge University Press. ISBN   978-0-521-29293-1.
  17. Mayr, Ernst. The Growth of Biological Thought, chapter 4
  18. Mayr, Ernst. The Growth of Biological Thought, chapter 7
  19. Gould, Stephen Jay. The Structure of Evolutionary Theory. The Belknap Press of Harvard University Press: Cambridge, 2002. ISBN   0-674-00613-5. p. 187.
  20. Lamarck (1914)
  21. Mayr, Ernst. The Growth of Biological Thought, chapter 10: "Darwin's evidence for evolution and common descent"; and chapter 11: "The causation of evolution: natural selection"
  22. Larson, Edward J. (2006). "Ch. 3". Evolution: The Remarkable History of a Scientific Theory. Random House Publishing Group. ISBN   978-1-58836-538-5. Archived from the original on 2015-03-24.
  23. Noble, Ivan (2003-04-14). "Human genome finally complete". BBC News. Archived from the original on 2006-06-14. Retrieved 2006-07-22.
  24. Mazzarello, P (May 1999). "A unifying concept: the history of cell theory". Nature Cell Biology. 1 (1): E13–15. doi:10.1038/8964. PMID   10559875.
  25. De Duve, Christian (2002). Life Evolving: Molecules, Mind, and Meaning. New York: Oxford University Press. p. 44. ISBN   978-0-19-515605-8.
  26. Futuyma, DJ (2005). Evolution. Sinauer Associates. ISBN   978-0-87893-187-3. OCLC   57311264.
  27. Packard, Alpheus Spring (1901). Lamarck, the founder of Evolution: his life and work with translations of his writings on organic evolution. New York: Longmans, Green. ISBN   978-0-405-12562-1.
  28. "The Complete Works of Darwin Online – Biography". Archived from the original on 2007-01-07. Retrieved 2006-12-15.
  29. Dobzhansky, T. (1973). "Nothing in biology makes sense except in the light of evolution". The American Biology Teacher. 35 (3): 125–29. CiteSeerX . doi:10.2307/4444260. JSTOR   4444260.
  30. Carroll, Joseph, ed. (2003). On the origin of species by means of natural selection. Peterborough, Ontario: Broadview. p. 15. ISBN   978-1-55111-337-1. As Darwinian scholar Joseph Carroll of the University of Missouri–St. Louis puts it in his introduction to a modern reprint of Darwin's work: "The Origin of Species has special claims on our attention. It is one of the two or three most significant works of all time—one of those works that fundamentally and permanently alter our vision of the world ... It is argued with a singularly rigorous consistency but it is also eloquent, imaginatively evocative, and rhetorically compelling."
  31. Shermer p. 149.
  32. Darwin, Charles (1859). On the Origin of Species , John Murray.
  33. Simpson, George Gaylord (1967). The Meaning of Evolution (Second ed.). Yale University Press. ISBN   978-0-300-00952-1.
  34. "Phylogeny". 2007-11-11. Archived from the original on 2013-10-04. Retrieved 2013-10-02.
  35. Montévil, M; Mossio, M; Pocheville, A; Longo, G (October 2016). "Theoretical principles for biology: Variation". Progress in Biophysics and Molecular Biology. From the Century of the Genome to the Century of the Organism: New Theoretical Approaches. 122 (1): 36–50. doi:10.1016/j.pbiomolbio.2016.08.005. PMID   27530930. Archived from the original on 2018-03-20.
  36. Marcial, Gene G. (August 13, 2007) From SemBiosys, A New Kind Of Insulin Archived 2014-10-29 at the Wayback Machine .
  37. Thanbichler, M; Wang, SC; Shapiro, L (October 2005). "The bacterial nucleoid: a highly organized and dynamic structure". Journal of Cellular Biochemistry. 96 (3): 506–21. doi:10.1002/jcb.20519. PMID   15988757.
  38. "Genotype definition – Medical Dictionary definitions". 2012-03-19. Archived from the original on 2013-09-21. Retrieved 2013-10-02.
  39. Raven, PH; Johnson, GB (1999). Biology (Fifth ed.). Boston: Hill Companies. p. 1058. ISBN   978-0-697-35353-5.
  40. Rodolfo, Kelvin (January 2000). "What is homeostasis?". Scientific American. Archived from the original on 2013-12-03.
  41. Bryant, DA; Frigaard, NU (November 2006). "Prokaryotic photosynthesis and phototrophy illuminated". Trends in Microbiology. 14 (11): 488–96. doi:10.1016/j.tim.2006.09.001. PMID   16997562.
  42. Smith, AL (1997). Oxford dictionary of biochemistry and molecular biology. Oxford [Oxfordshire]: Oxford University Press. p. 508. ISBN   978-0-19-854768-6. Photosynthesis – the synthesis by organisms of organic chemical compounds, esp. carbohydrates, from carbon dioxide using energy obtained from light rather than the oxidation of chemical compounds.
  43. Edwards, Katrina. "Microbiology of a Sediment Pond and the Underlying Young, Cold, Hydrologically Active Ridge Flank". Woods Hole Oceanographic Institution.
  44. Campbell, Neil A.; Reece, Jane B. (2001). "6". Biology. Benjamin Cummings. ISBN   978-0-8053-6624-2. OCLC   47521441.
  45. Bartsch, John; Colvard, Mary P. (2009). The Living Environment. New York State: Prentice Hall. ISBN   978-0-13-361202-8.
  46. "Molecular Biology". Retrieved 2018-04-25.
  47. Gray, Henry (1918). Anatomy of the Human Body (20th ed.). Archived from the original on 2007-03-16.
  48. Griffiths, Anthony J.F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, William M., eds. (2000). "Genetics and the Organism: Introduction". An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN   978-0-7167-3520-5.
  49. Hartl, D, Jones, E (2005). Genetics: Analysis of Genes and Genomes (6th ed.). Jones & Bartlett. ISBN   978-0-7637-1511-3.CS1 maint: Multiple names: authors list (link)
  50. Brenner, S (May 1974). "The genetics of Caenorhabditis elegans". Genetics. 77 (1): 71–94. PMC   1213120 . PMID   4366476. Archived from the original on 2015-06-29.
  51. Sang, James H. (2001). "Drosophila melanogaster: The Fruit Fly". In Reeve, Eric C.R. (ed.). Encyclopedia of genetics. USA: Fitzroy Dearborn Publishers, I. p. 157. ISBN   978-1-884964-34-3.
  52. Haffter, P; Nüsslein-Volhard, C (February 1996). "Large scale genetics in a small vertebrate, the zebrafish". The International Journal of Developmental Biology. 40 (1): 221–27. PMID   8735932. Archived from the original on 2016-05-15.
  53. Keller G (May 2005). "Embryonic stem cell differentiation: emergence of a new era in biology and medicine". Genes & Development. 19 (10): 1129–55. doi:10.1101/gad.1303605. PMID   15905405.
  54. Rensink, WA; Buell, CR (June 2004). "Arabidopsis to rice. Applying knowledge from a weed to enhance our understanding of a crop species". Plant Physiology. 135 (2): 622–29. doi:10.1104/pp.104.040170. PMC   514098 . PMID   15208410.
  55. Coelho, SM; Peters, AF; Charrier, B; Roze, D; Destombe, C; Valero, M; Cock, JM (December 2007). "Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms". Gene. 406 (1–2): 152–70. doi:10.1016/j.gene.2007.07.025. PMID   17870254.
  56. Fields, S; Johnston, M (March 2005). "Cell biology. Whither model organism research?". Science. 307 (5717): 1885–86. doi:10.1126/science.1108872. PMID   15790833.
  57. Jablonski D (June 1999). "The future of the fossil record". Science. 284 (5423): 2114–16. doi:10.1126/science.284.5423.2114. PMID   10381868.
  58. Gillespie, John H. (1998). Population Genetics: A Concise Guide. Johns Hopkins Press. ISBN   978-0-8018-5755-3.
  59. Smocovitis, Vassiliki Betta (1996). Unifying Biology: the evolutionary synthesis and evolutionary biology. Princeton University Press. ISBN   978-0-691-03343-3.
  60. Neill, Campbell (1996). Biology; Fourth edition. The Benjamin/Cummings Publishing Company. p. G-21 (Glossary). ISBN   978-0-8053-1940-8.
  61. Douglas, Futuyma (1998). Evolutionary Biology; Third edition. Sinauer Associates. p. 88. ISBN   978-0-87893-189-7.
  62. Margulis, Lynn; Schwartz, KV (1997). Five Kingdoms: An Illustrated Guide to the Phyla of Life on Earth (3rd ed.). WH Freeman & Co. ISBN   978-0-7167-3183-2. OCLC   223623098.
  63. 1 2 Woese, CR; Kandler, O; Wheelis, ML (June 1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proceedings of the National Academy of Sciences of the United States of America. 87 (12): 4576–79. Bibcode:1990PNAS...87.4576W. doi:10.1073/pnas.87.12.4576. PMC   54159 . PMID   2112744.
  64. Rybicki, EP (1990). "The classification of organisms at the edge of life, or problems with virus systematics". S Afr J Sci. 86: 182–86. Archived from the original on 2017-07-18.
  65. McNeill, J; Barrie, FR; Buck, WR; Demoulin, V; Greuter, W; Hawksworth, DL; et al. (2012). International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnum Vegetabile 154. A.R.G. Gantner Verlag KG. ISBN   978-3-87429-425-6. Archived from the original on 2013-11-04. Recommendation 60F
  66. Silyn-Roberts, Heather (2000). Writing for Science and Engineering: Papers, Presentation. Oxford: Butterworth-Heinemann. p. 198. ISBN   978-0-7506-4636-9.
  67. "ICTV Virus Taxonomy 2009". Archived from the original on 2013-10-04. Retrieved 2013-10-02.
  68. Index of Viruses – Pospiviroidae (2006). In: ICTVdB – The Universal Virus Database, version 4. Büchen-Osmond, C (Ed), Columbia University, New York, USA. Version 4 is based on Virus Taxonomy, Classification and Nomenclature of Viruses, 8th ICTV Report of the International Committee on Taxonomy of Viruses. Fauquet, CM; Mayo, MA; Maniloff, J; Desselberger, U; Ball, LA (editors) (2005) Elsevier/Academic Press, pp. 1259.
  69. Prusiner, SB; Baldwin, M; Collinge, J; DeArmond, SJ; Marsh, R; Tateishi, J; Weissmann, C. "90. Prions – ICTVdB Index of Viruses". United States National Institutes of Health. Archived from the original on 2009-08-27. Retrieved 2009-10-28.
  70. Mayo, MA; Berns, KI; Fritsch, C; Jackson, AO; Leibowitz, MJ; Taylor, JM. "81. Satellites – ICTVdB Index of Viruses". United States National Institutes of Health. Archived from the original on 2009-05-01. Retrieved 2009-10-28.
  71. McNeill, John (November 1996). "The BioCode: Integrated biological nomenclature for the 21st century?". Proceedings of a Mini-Symposium on Biological Nomenclature in the 21st Century. Archived from the original on 2014-01-04.
  72. "The Draft BioCode (2011)". International Committee on Bionomenclature (ICB). Archived from the original on 2013-06-13.
  73. Greuter, W; Garrity, G; Hawksworth, DL; Jahn, R; Kirk, PM; Knapp, S; McNeill, J, Michel, E; Patterson, DJ; Pyle, R; Tindall, BJ (2011). "Draft BioCode (2011): Principles and rules regulating the naming of organisms". Taxon. 60: 201–12. doi:10.1002/tax.601019. Archived from the original on 2012-10-24.CS1 maint: Multiple names: authors list (link)
  74. Hawksworth, David L (2011). "Introducing the Draft BioCode (2011)". Taxon. 60: 199–200. doi:10.1002/tax.601018. Archived from the original on 2012-10-24.
  75. Begon, M; Townsend, CR; Harper, JL (2006). Ecology: From individuals to ecosystems. (4th ed.). Blackwell. ISBN   978-1-4051-1117-1.
  76. Habitats of the world. New York: Marshall Cavendish. 2004. p. 238. ISBN   978-0-7614-7523-1.
  77. Black, J (June 2002). "Darwin in the world of emotions". Journal of the Royal Society of Medicine. 95 (6): 311–13. doi:10.1258/jrsm.95.6.311. PMC   1279921 . PMID   12042386.
  78. Otto, SP; Gerstein, AC (August 2006). "Why have sex? The population genetics of sex and recombination". Biochemical Society Transactions. 34 (Pt 4): 519–22. doi:10.1042/BST0340519. PMID   16856849.
  79. Agrawal, AF (September 2006). "Evolution of sex: why do organisms shuffle their genotypes?". Current Biology. 16 (17): R696–704. Bibcode:1996CBio....6.1213A. doi:10.1016/j.cub.2006.07.063. PMID   16950096.
  80. Bernstein, Harris; Bernstein, Carol; Michod, Richard E. (2011). "Meiosis as an Evolutionary Adaptation for DNA Repair Chapter 19". In Kruman editor, Inna (ed.). DNA Repair. InTech. doi:10.5772/25117. ISBN   978-953-307-697-3. Archived from the original on 2013-06-16.CS1 maint: Extra text: editors list (link)
  81. Hörandl, Elvira (2013). "Meiosis and the Paradox of Sex in Nature". In Bernstein, Carol (ed.). Meiosis. InTech. doi:10.5772/56542. ISBN   978-953-51-1197-9. Archived from the original on 2013-10-29.
  82. "Branches of Biology". Archived from the original on 2013-07-27. Retrieved 2013-10-02.
  83. "Biology on". Archived from the original on 2013-10-05. Retrieved 2013-10-02.

Further reading

Journal links