Microbial mat

Last updated
The cyanobacterial algal mat, salty lake on the White Sea seaside Cyanobacterial-algal mat.jpg
The cyanobacterial algal mat, salty lake on the White Sea seaside

A microbial mat is a multi-layered sheet of microorganisms, mainly bacteria and archaea, or bacteria alone. Microbial mats grow at interfaces between different types of material, mostly on submerged or moist surfaces, but a few survive in deserts. [1] A few are found as endosymbionts of animals.

Contents

Although only a few centimetres thick at most, microbial mats create a wide range of internal chemical environments, and hence generally consist of layers of microorganisms that can feed on or at least tolerate the dominant chemicals at their level and which are usually of closely related species. In moist conditions mats are usually held together by slimy substances secreted by the microorganisms. In many cases some of the bacteria form tangled webs of filaments which make the mat tougher. The best known physical forms are flat mats and stubby pillars called stromatolites, but there are also spherical forms.

Microbial mats are the earliest form of life on Earth for which there is good fossil evidence, from 3,500  million years ago, and have been the most important members and maintainers of the planet's ecosystems. Originally they depended on hydrothermal vents for energy and chemical "food", but the development of photosynthesis allowed mats to proliferate outside of these environments by utilizing a more widely available energy source, sunlight. The final and most significant stage of this liberation was the development of oxygen-producing photosynthesis, since the main chemical inputs for this are carbon dioxide and water.

As a result, microbial mats began to produce the atmosphere we know today, in which free oxygen is a vital component. At around the same time they may also have been the birthplace of the more complex eukaryote type of cell, of which all multicellular organisms are composed. [2] Microbial mats were abundant on the shallow seabed until the Cambrian substrate revolution, when animals living in shallow seas increased their burrowing capabilities and thus broke up the surfaces of mats and let oxygenated water into the deeper layers, poisoning the oxygen-intolerant microorganisms that lived there. Although this revolution drove mats off soft floors of shallow seas, they still flourish in many environments where burrowing is limited or impossible, including rocky seabeds and shores, and hyper-saline and brackish lagoons. They are found also on the floors of the deep oceans.

Because of microbial mats' ability to use almost anything as "food", there is considerable interest in industrial uses of mats, especially for water treatment and for cleaning up pollution.

Description

Stromatolites are formed by some microbial mats as the microbes slowly move upwards to avoid being smothered by sediment. Stromatolites in Sharkbay.jpg
Stromatolites are formed by some microbial mats as the microbes slowly move upwards to avoid being smothered by sediment.

Microbial mats may also be referred to as algal mats and bacterial mats. They are a type of biofilm that is large enough to see with the naked eye and robust enough to survive moderate physical stresses. These colonies of bacteria form on surfaces at many types of interface, for example between water and the sediment or rock at the bottom, between air and rock or sediment, between soil and bed-rock, etc. Such interfaces form vertical chemical gradients, i.e. vertical variations in chemical composition, which make different levels suitable for different types of bacteria and thus divide microbial mats into layers, which may be sharply defined or may merge more gradually into each other. [3] A variety of microbes are able to transcend the limits of diffusion by using "nanowires" to shuttle electrons from their metabolic reactions up to two centimetres deep in the sediment – for example, electrons can be transferred from reactions involving hydrogen sulfide deeper within the sediment to oxygen in the water, which acts as an electron acceptor. [4]

The best-known types of microbial mat may be flat laminated mats, which form on approximately horizontal surfaces, and stromatolites, stubby pillars built as the microbes slowly move upwards to avoid being smothered by sediment deposited on them by water. However, there are also spherical mats, some on the outside of pellets of rock or other firm material and others inside spheres of sediment. [3]

Structure

A microbial mat consists of several layers, each of which is dominated by specific types of microorganism, mainly bacteria. Although the composition of individual mats varies depending on the environment, as a general rule the by-products of each group of microorganisms serve as "food" for other groups. In effect each mat forms its own food chain, with one or a few groups at the top of the food chain as their by-products are not consumed by other groups. Different types of microorganism dominate different layers based on their comparative advantage for living in that layer. In other words, they live in positions where they can out-perform other groups rather than where they would absolutely be most comfortable — ecological relationships between different groups are a combination of competition and co-operation. Since the metabolic capabilities of bacteria (what they can "eat" and what conditions they can tolerate) generally depend on their phylogeny (i.e. the most closely related groups have the most similar metabolisms), the different layers of a mat are divided both by their different metabolic contributions to the community and by their phylogenetic relationships.

In a wet environment where sunlight is the main source of energy, the uppermost layers are generally dominated by aerobic photosynthesizing cyanobacteria (blue-green bacteria whose color is caused by their having chlorophyll), while the lowest layers are generally dominated by anaerobic sulfate-reducing bacteria. [5] Sometimes there are intermediate (oxygenated only in the daytime) layers inhabited by facultative anaerobic bacteria. For example, in hypersaline ponds near Guerrero Negro (Mexico) various kind of mats were explored. There are some mats with a middle purple layer inhabited by photosynthesizing purple bacteria. [6] Some other mats have a white layer inhabited by chemotrophic sulfur oxidizing bacteria and beneath them an olive layer inhabited by photosynthesizing green sulfur bacteria and heterotrophic bacteria. [7] However, this layer structure is not changeless during a day: some species of cyanobacteria migrate to deeper layers at morning, and go back at evening, to avoid intensive solar light and UV radiation at mid-day. [7] [8]

Microbial mats are generally held together and bound to their substrates by slimy extracellular polymeric substances which they secrete. In many cases some of the bacteria form filaments (threads), which tangle and thus increase the colonies' structural strength, especially if the filaments have sheaths (tough outer coverings). [3]

This combination of slime and tangled threads attracts other microorganisms which become part of the mat community, for example protozoa, some of which feed on the mat-forming bacteria, and diatoms, which often seal the surfaces of submerged microbial mats with thin, parchment-like coverings. [3]

Marine mats may grow to a few centimeters in thickness, of which only the top few millimeters are oxygenated. [9]

Types of environment colonized

Underwater microbial mats have been described as layers that live by exploiting and to some extent modifying local chemical gradients, i.e. variations in the chemical composition. Thinner, less complex biofilms live in many sub-aerial environments, for example on rocks, on mineral particles such as sand, and within soil. They have to survive for long periods without liquid water, often in a dormant state. Microbial mats that live in tidal zones, such as those found in the Sippewissett salt marsh, often contain a large proportion of similar microorganisms that can survive for several hours without water. [3]

Microbial mats and less complex types of biofilm are found at temperature ranges from –40 °C to +120 °C, because variations in pressure affect the temperatures at which water remains liquid. [3]

They even appear as endosymbionts in some animals, for example in the hindguts of some echinoids. [10]

Ecological and geological importance

Wrinkled Kinneyia-type sedimentary structures formed beneath cohesive microbial mats in peritidal zones. The image shows the location, in the Burgsvik beds of Sweden, where the texture was first identified as evidence of a microbial mat. Runzelmarken.jpg
Wrinkled Kinneyia-type sedimentary structures formed beneath cohesive microbial mats in peritidal zones. The image shows the location, in the Burgsvik beds of Sweden, where the texture was first identified as evidence of a microbial mat.
Kinneyia-like structure in the Grimsby Formation (Silurian) exposed in Niagara Gorge, New York Kinneyia Grimsby Silurian Niagara Gorge.jpg
Kinneyia-like structure in the Grimsby Formation (Silurian) exposed in Niagara Gorge, New York
Blister-like microbial mat on ripple-marked surface of a Cambrian tidal flat at Blackberry Hill, Wisconsin Microbial mat on ripple-marked surface.jpg
Blister-like microbial mat on ripple-marked surface of a Cambrian tidal flat at Blackberry Hill, Wisconsin

Microbial mats use all of the types of metabolism and feeding strategy that have evolved on Earth—anoxygenic and oxygenic photosynthesis; anaerobic and aerobic chemotrophy (using chemicals rather than sunshine as a source of energy); organic and inorganic respiration and fermentation (i..e converting food into energy with and without using oxygen in the process); autotrophy (producing food from inorganic compounds) and heterotrophy (producing food only from organic compounds, by some combination of predation and detritivory). [3]

Most sedimentary rocks and ore deposits have grown by a reef-like build-up rather than by "falling" out of the water, and this build-up has been at least influenced and perhaps sometimes caused by the actions of microbes. Stromatolites, bioherms (domes or columns similar internally to stromatolites) and biostromes (distinct sheets of sediment) are among such microbe-influenced build-ups. [3] Other types of microbial mat have created wrinkled "elephant skin" textures in marine sediments, although it was many years before these textures were recognized as trace fossils of mats. [12] Microbial mats have increased the concentration of metal in many ore deposits, and without this it would not be feasible to mine them—examples include iron (both sulfide and oxide ores), uranium, copper, silver and gold deposits. [3]

Role in the history of life

The earliest mats

Microbial mats are among the oldest clear signs of life, as microbially induced sedimentary structures (MISS) formed 3,480  million years ago have been found in western Australia. [3] [13] [14] At that early stage the mats' structure may already have been similar to that of modern mats that do not include photosynthesizing bacteria. It is even possible that non-photosynthesizing mats were present as early as 4,000  million years ago. If so, their energy source would have been hydrothermal vents (high-pressure hot springs around submerged volcanoes), and the evolutionary split between bacteria and archea may also have occurred around this time. [15]

The earliest mats may have been small, single-species biofilms of chemotrophs that relied on hydrothermal vents to supply both energy and chemical "food". Within a short time (by geological standards) the build-up of dead microorganisms would have created an ecological niche for scavenging heterotrophs, possibly methane-emitting and sulfate-reducing organisms that would have formed new layers in the mats and enriched their supply of biologically useful chemicals. [15]

Photosynthesis

It is generally thought that photosynthesis, the biological generation of chemical energy from light, evolved shortly after 3,000  million years ago (3 billion). [15] However an isotope analysis suggests that oxygenic photosynthesis may have been widespread as early as 3,500  million years ago. [15] There are several different types of photosynthetic reaction, and analysis of bacterial DNA indicates that photosynthesis first arose in anoxygenic purple bacteria, while the oxygenic photosynthesis seen in cyanobacteria and much later in plants was the last to evolve. [16]

The earliest photosynthesis may have been powered by infra-red light, using modified versions of pigments whose original function was to detect infra-red heat emissions from hydrothermal vents. The development of photosynthetic energy generation enabled the microorganisms first to colonize wider areas around vents and then to use sunlight as an energy source. The role of the hydrothermal vents was now limited to supplying reduced metals into the oceans as a whole rather than being the main supporters of life in specific locations. [16] Heterotrophic scavengers would have accompanied the photosynthesizers in their migration out of the "hydrothermal ghetto". [15]

The evolution of purple bacteria, which do not produce or use oxygen but can tolerate it, enabled mats to colonize areas that locally had relatively high concentrations of oxygen, which is toxic to organisms that are not adapted to it. [17] Microbial mats would have been separated into oxidized and reduced layers, and this specialization would have increased their productivity. [15] It may be possible to confirm this model by analyzing the isotope ratios of both carbon and sulfur in sediments laid down in shallow water. [15]

The last major stage in the evolution of microbial mats was the appearance of cyanobacteria, photosynthesizers which both produce and use oxygen. This gave undersea mats their typical modern structure: an oxygen-rich top layer of cyanobacteria; a layer of photosynthesizing purple bacteria that could tolerate oxygen; and oxygen-free, H2S-dominated lower layers of heterotrophic scavengers, mainly methane-emitting and sulfate-reducing organisms. [15]

It is estimated that the appearance of oxygenic photosynthesis increased biological productivity by a factor of between 100 and 1,000. All photosynthetic reactions require a reducing agent, but the significance of oxygenic photosynthesis is that it uses water as a reducing agent, and water is much more plentiful than the geologically produced reducing agents on which photosynthesis previously depended. The resulting increases in the populations of photosynthesizing bacteria in the top layers of microbial mats would have caused corresponding population increases among the chemotrophic and heterotrophic microorganisms that inhabited the lower layers and which fed respectively on the by-products of the photosynthesizers and on the corpses and / or living bodies of the other mat organisms. These increases would have made microbial mats the planet's dominant ecosystems. From this point onwards life itself produced significantly more of the resources it needed than did geochemical processes. [18]

Oxygenic photosynthesis in microbial mats would also have increased the free oxygen content of the Earth's atmosphere, both directly by emitting oxygen and because the mats emitted molecular hydrogen (H2), some of which would have escaped from the Earth's atmosphere before it could re-combine with free oxygen to form more water. Microbial mats thus played a major role in the evolution of organisms which could first tolerate free oxygen and then use it as an energy source. [18] Oxygen is toxic to organisms that are not adapted to it, but greatly increases the metabolic efficiency of oxygen-adapted organisms [17] — for example anaerobic fermentation produces a net yield of two molecules of adenosine triphosphate, cells' internal "fuel", per molecule of glucose, while aerobic respiration produces a net yield of 36. [19] The oxygenation of the atmosphere was a prerequisite for the evolution of the more complex eukaryote type of cell, from which all multicellular organisms are built. [20]

Cyanobacteria have the most complete biochemical "toolkits" of all the mat-forming organisms: the photosynthesis mechanisms of both green bacteria and purple bacteria; oxygen production; and the Calvin cycle, which converts carbon dioxide and water into carbohydrates and sugars. It is likely that they acquired many of these sub-systems from existing mat organisms, by some combination of horizontal gene transfer and endosymbiosis followed by fusion. Whatever the causes, cyanobacteria are the most self-sufficient of the mat organisms and were well-adapted to strike out on their own both as floating mats and as the first of the phytoplankton, which forms the basis of most marine food chains. [15]

Origin of eukaryotes

The time at which eukaryotes first appeared is still uncertain: there is reasonable evidence that fossils dated between 1,600  million years ago and 2,100  million years ago represent eukaryotes, [21] but the presence of steranes in Australian shales may indicate that eukaryotes were present 2,700  million years ago. [22] There is still debate about the origins of eukaryotes, and many of the theories focus on the idea that a bacterium first became an endosymbiont of an anaerobic archean and then fused with it to become one organism. If such endosymbiosis was an important factor, microbial mats would have encouraged it. [2] There are two known variations of this scenario:

Life on land

Microbial mats from ~ 1,200  million years ago provide the first evidence of life in the terrestrial realm. [24]

The earliest multicellular "animals"

Cambrian substrate revolution 02.png
Before:
After:
Sessile organism
anchored in mat
Animal grazing
on mat
Animals embedded
in mat
Animals
burrowing
just under
mat
    =Microbial mat
Firm, layered, anoxic, sulphidic substrate
Animals moving on / in
surface of sea-floor
Loose,
oxygenated
upper substrate
with
burrowing
animals
Cambrian substrate revolution 02.png
Before and after the Cambrian substrate revolution

The Ediacara biota are the earliest widely accepted evidence of multicellular "animals". Most Ediacaran strata with the "elephant skin" texture characteristic of microbial mats contain fossils, and Ediacaran fossils are hardly ever found in beds that do not contain these microbial mats. [25] Adolf Seilacher categorized the "animals" as: "mat encrusters", which were permanently attached to the mat; "mat scratchers", which grazed the surface of the mat without destroying it; "mat stickers", suspension feeders that were partially embedded in the mat; and "undermat miners", which burrowed underneath the mat and fed on decomposing mat material. [26]

The Cambrian substrate revolution

In the Early Cambrian, however, organisms began to burrow vertically for protection or food, breaking down the microbial mats, and thus allowing water and oxygen to penetrate a considerable distance below the surface and kill the oxygen-intolerant microorganisms in the lower layers. As a result of this Cambrian substrate revolution, marine microbial mats are confined to environments in which burrowing is non-existent or negligible: [27] very harsh environments, such as hyper-saline lagoons or brackish estuaries, which are uninhabitable for the burrowing organisms that broke up the mats; [28] rocky "floors" which the burrowers cannot penetrate; [27] the depths of the oceans, where burrowing activity today is at a similar level to that in the shallow coastal seas before the revolution. [27]

Current status

Although the Cambrian substrate revolution opened up new niches for animals, it was not catastrophic for microbial mats, but it did greatly reduce their extent.

Use of microbial mats in paleontology

Most fossils preserve only the hard parts of organisms, e.g. shells. The rare cases where soft-bodied fossils are preserved (the remains of soft-bodied organisms and also of the soft parts of organisms for which only hard parts such as shells are usually found) are extremely valuable because they provide information about organisms that are hardly ever fossilized and much more information than is usually available about those for which only the hard parts are usually preserved. [29] Microbial mats help to preserve soft-bodied fossils by:

Industrial uses

The ability of microbial mat communities to use a vast range of "foods" has recently led to interest in industrial uses. There have been trials of microbial mats for purifying water, both for human use and in fish farming, [31] [32] and studies of their potential for cleaning up oil spills. [33] As a result of the growing commercial potential, there have been applications for and grants of patents relating to the growing, installation and use of microbial mats, mainly for cleaning up pollutants and waste products. [34]

See also

Notes

  1. Schieber, J.; Bose, P; Eriksson, P. G.; Banerjee, S.; Sarkar, S.; Altermann, W.; Catuneanu, O. (2007). Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record. Elsevier. ISBN   978-0-444-52859-9 . Retrieved 2008-07-01.
  2. 1 2 Nobs, Stephanie-Jane; MacLeod, Fraser I.; Wong, Hon Lun; Burns, Brendan P. (2022-05-01). "Eukarya the chimera: eukaryotes, a secondary innovation of the two domains of life?". Trends in Microbiology. 30 (5): 421–431. doi:10.1016/j.tim.2021.11.003. ISSN   0966-842X. PMID   34863611. S2CID   244823103.
  3. 1 2 3 4 5 6 7 8 9 10 Krumbein, W.E.; Brehm, U.; Gerdes, G.; Gorbushina, A.A.; Levit, G.; Palinska, K.A. (2003). "Biofilm, Biodictyon, Biomat Microbialites, Oolites, Stromatolites, Geophysiology, Global Mechanism, Parahistology". In Krumbein, W.E.; Paterson, D.M.; Zavarzin, G.A. (eds.). Fossil and Recent Biofilms: A Natural History of Life on Earth (PDF). Kluwer Academic. pp. 1–28. ISBN   978-1-4020-1597-7. Archived from the original (PDF) on January 6, 2007. Retrieved 2008-07-09.
  4. Nielsen, L.; Risgaard-Petersen, N.; Fossing, H.; Christensen, P.; Sayama, M. (2010). "Electric currents couple spatially separated biogeochemical processes in marine sediment". Nature. 463 (7284): 1071–1074. Bibcode:2010Natur.463.1071N. doi:10.1038/nature08790. PMID   20182510. S2CID   205219761.
  5. Risatti, J. B.; Capman, W.C.; Stahl, D.A. (October 11, 1994). "Community structure of a microbial mat: the phylogenetic dimension". Proceedings of the National Academy of Sciences. 91 (21): 10173–7. Bibcode:1994PNAS...9110173R. doi: 10.1073/pnas.91.21.10173 . PMC   44980 . PMID   7937858.
  6. Lucas J. Stal: Physiological ecology of cyanobacteria in microbial mats and other communities, New Phytologist (1995), 131, 1–32
  7. 1 2 Garcia-Pichel F., Mechling M., Castenholz R.W., Diel Migrations of Microorganisms within a Benthic, Hypersaline Mat Community, Appl. and Env. Microbiology, May 1994, pp. 1500–1511
  8. Bebout B.M., Garcia-Pichel F., UV B-Induced Vertical Migrations of Cyanobacteria in a Microbial Mat, Appl. Environ. Microbiol., Dec 1995, 4215–4222, Vol 61, No. 12
  9. Che, L.M.; Andréfouët. S.; Bothorel, V.; Guezennec, M.; Rougeaux, H.; Guezennec, J.; Deslandes, E.; Trichet, J.; Matheron, R.; Le Campion, T.; Payri, C.; Caumette, P. (2001). "Physical, chemical, and microbiological characteristics of microbial mats (KOPARA) in the South Pacific atolls of French Polynesia" . Canadian Journal of Microbiology. 47 (11): 994–1012. doi:10.1139/cjm-47-11-994. PMID   11766060 . Retrieved 2008-07-18.[ permanent dead link ]
  10. Temara, A.; de Ridder, C.; Kuenen, J.G.; Robertson, L.A. (February 1993). "Sulfide-oxidizing bacteria in the burrowing echinoid, Echinocardium cordatum (Echinodermata)". Marine Biology. 115 (2): 179. doi:10.1007/BF00346333. S2CID   85351601.
  11. Porada H.; Ghergut J.; Bouougri El H. (2008). "Kinneyia-Type Wrinkle Structures—Critical Review And Model Of Formation". PALAIOS. 23 (2): 65–77. Bibcode:2008Palai..23...65P. doi:10.2110/palo.2006.p06-095r. S2CID   128464944.
  12. 1 2 Manten, A. A. (1966). "Some problematic shallow-marine structures". Marine Geol. 4 (3): 227–232. Bibcode:1966MGeol...4..227M. doi:10.1016/0025-3227(66)90023-5. hdl: 1874/16526 . S2CID   129854399. Archived from the original on 2008-10-21. Retrieved 2007-06-18.
  13. Borenstein, Seth (13 November 2013). "Oldest fossil found: Meet your microbial mom". AP News . Retrieved 15 November 2013.
  14. Noffke, Nora; Christian, Christian; Wacey, David; Hazen, Robert M. (8 November 2013). "Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia". Astrobiology . 13 (12): 1103–24. Bibcode:2013AsBio..13.1103N. doi:10.1089/ast.2013.1030. PMC   3870916 . PMID   24205812.
  15. 1 2 3 4 5 6 7 8 9 10 11 Nisbet, E.G. & Fowler, C.M.R. (December 7, 1999). "Archaean metabolic evolution of microbial mats". Proceedings of the Royal Society B. 266 (1436): 2375. doi:10.1098/rspb.1999.0934. PMC   1690475 . – abstract with link to free full content (PDF)
  16. 1 2 Blankenship, R.E. (1 January 2001). "Molecular evidence for the evolution of photosynthesis". Trends in Plant Science. 6 (1): 4–6. doi:10.1016/S1360-1385(00)01831-8. PMID   11164357.
  17. 1 2 Abele, D. (7 November 2002). "Toxic oxygen: The radical life-giver" (PDF). Nature. 420 (27): 27. Bibcode:2002Natur.420...27A. doi:10.1038/420027a. PMID   12422197. S2CID   4317378.
  18. 1 2 Hoehler, T.M.; Bebout, B.M.; Des Marais, D.J. (19 July 2001). "The role of microbial mats in the production of reduced gases on the early Earth". Nature. 412 (6844): 324–7. Bibcode:2001Natur.412..324H. doi:10.1038/35085554. PMID   11460161. S2CID   4365775.
  19. "Introduction to Aerobic Respiration". University of California, Davis. Archived from the original on September 8, 2008. Retrieved 2008-07-14.
  20. Hedges, S.B.; Blair, J.E; Venturi, M.L.; Shoe, J.L (28 January 2004). "A molecular timescale of eukaryote evolution and the rise of complex multicellular life". BMC Evolutionary Biology. 4: 2. doi: 10.1186/1471-2148-4-2 . PMC   341452 . PMID   15005799.
  21. Knoll, Andrew H.; Javaux, E.J; Hewitt, D.; Cohen, P. (2006). "Eukaryotic organisms in Proterozoic oceans". Philosophical Transactions of the Royal Society B . 361 (1470): 1023–38. doi:10.1098/rstb.2006.1843. PMC   1578724 . PMID   16754612.
  22. Brocks, J.J.; Logan, G.A.; Buick, R.; Summons, R.E. (13 August 1999). "Archean Molecular Fossils and the Early Rise of Eukaryotes". Science. 285 (5430): 1033–6. Bibcode:1999Sci...285.1033B. CiteSeerX   10.1.1.516.9123 . doi:10.1126/science.285.5430.1033. PMID   10446042.
  23. Martin W. & Müller, M. (March 1998). "The hydrogen hypothesis for the first eukaryote". Nature. 392 (6671): 37–41. Bibcode:1998Natur.392...37M. doi:10.1038/32096. PMID   9510246. S2CID   338885 . Retrieved 2008-07-16.
  24. Prave, A. R. (2002). "Life on land in the Proterozoic: Evidence from the Torridonian rocks of northwest Scotland". Geology. 30 (9): 811–812. Bibcode:2002Geo....30..811P. doi:10.1130/0091-7613(2002)030<0811:LOLITP>2.0.CO;2. ISSN   0091-7613.
  25. Runnegar, B.N.; Fedonkin, M.A. (1992). "Proterozoic metazoan body fossils". In Schopf, W.J.; Klein, C. (eds.). The Proterozoic biosphere. Cambridge University Press. pp. 369–388. ISBN   978-0-521-36615-1.
  26. Seilacher, A. (1999). "Biomat-related lifestyles in the Precambrian". PALAIOS. 14 (1): 86–93. Bibcode:1999Palai..14...86S. doi:10.2307/3515363. JSTOR   3515363 . Retrieved 2008-07-17.
  27. 1 2 3 Bottjer, D.J.; Hagadorn, J.W.; Dornbos, S.Q. "The Cambrian substrate revolution" (PDF). Amherst College. Archived from the original (PDF) on 2006-09-09. Retrieved 2008-06-28.
  28. Seilacher, Adolf; Luis A. Buatoisb; M. Gabriela Mángano (2005-10-07). "Trace fossils in the Ediacaran–Cambrian transition: Behavioral diversification, ecological turnover and environmental shift". Palaeogeography, Palaeoclimatology, Palaeoecology. 227 (4): 323–56. Bibcode:2005PPP...227..323S. doi:10.1016/j.palaeo.2005.06.003.
  29. 1 2 3 4 5 Briggs, D.E.G. (2003). "The role of biofilms in the fossilization of non-biomineralized tissues". In Krumbein, W.E.; Paterson, D.M.; Zavarzin, G.A. (eds.). Fossil and Recent Biofilms: A Natural History of Life on Earth. Kluwer Academic. pp. 281–290. ISBN   978-1-4020-1597-7 . Retrieved 2008-07-09.
  30. Seilacher, A. (1994). "How valid is Cruziana Stratigraphy?". International Journal of Earth Sciences. 83 (4): 752–8. Bibcode:1994GeoRu..83..752S. doi:10.1007/BF00251073. S2CID   129504434.
  31. Potts, D.A.; Patenaude, E.L.; Görres, J.H.; Amador, J.A. "Wastewater Renovation and Hydraulic Performance of a Low Profile Leaching System" (PDF). GeoMatrix, Inc. Retrieved 2008-07-17.[ dead link ]
  32. Bender, J (August 2004). "A waste effluent treatment system based on microbial mats for black sea bass Centropristis striata recycled-water mariculture" . Aquacultural Engineering. 31 (1–2): 73–82. doi:10.1016/j.aquaeng.2004.02.001 . Retrieved 2008-07-17.
  33. "Role of microbial mats in bioremediation of hydrocarbon polluted coastal zones". ISTworld. Archived from the original on 2011-07-23. Retrieved 2008-07-17.
  34. "Compositions and methods of use of constructed microbial mats – United States Patent 6033559" . Retrieved 2008-07-17.; "Silage-microbial mat system and method – United States Patent 5522985" . Retrieved 2008-07-17.; "GeoMat". GeoMatrix, Inc. Retrieved 2008-07-17.[ dead link ] cites U.S. Patents 7351005 and 7374670

Related Research Articles

<span class="mw-page-title-main">Stromatolite</span> Layered sedimentary structure formed by the growth of bacteria or algae

Stromatolites or stromatoliths are layered sedimentary formations (microbialite) that are created mainly by photosynthetic microorganisms such as cyanobacteria, sulfate-reducing bacteria, and Pseudomonadota. These microorganisms produce adhesive compounds that cement sand and other rocky materials to form mineral "microbial mats". In turn, these mats build up layer by layer, growing gradually over time. A stromatolite may grow to a meter or more. Fossilized stromatolites provide important records of some of the most ancient life. As of the Holocene, living forms are rare.

<span class="mw-page-title-main">Cyanobacteria</span> Phylum of photosynthesising prokaryotes that can produce toxic blooms in lakes and other waters

Cyanobacteria, also called Cyanobacteriota or Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name cyanobacteria refers to their color, which similarly forms the basis of cyanobacteria's common name, blue-green algae, although they are not usually scientifically classified as algae. They appear to have originated in a freshwater or terrestrial environment. Cyanobacteria produce a range of toxins known as cyanotoxins that can cause harmful health effects in humans and animals.

The purple sulfur bacteria (PSB) are part of a group of Pseudomonadota capable of photosynthesis, collectively referred to as purple bacteria. They are anaerobic or microaerophilic, and are often found in stratified water environments including hot springs, stagnant water bodies, as well as microbial mats in intertidal zones. Unlike plants, algae, and cyanobacteria, purple sulfur bacteria do not use water as their reducing agent, and therefore do not produce oxygen. Instead, they can use sulfur in the form of sulfide, or thiosulfate (as well, some species can use H2, Fe2+, or NO2) as the electron donor in their photosynthetic pathways. The sulfur is oxidized to produce granules of elemental sulfur. This, in turn, may be oxidized to form sulfuric acid.

<span class="mw-page-title-main">Bioturbation</span> Reworking of soils and sediments by organisms.

Bioturbation is defined as the reworking of soils and sediments by animals or plants. It includes burrowing, ingestion, and defecation of sediment grains. Bioturbating activities have a profound effect on the environment and are thought to be a primary driver of biodiversity. The formal study of bioturbation began in the 1800s by Charles Darwin experimenting in his garden. The disruption of aquatic sediments and terrestrial soils through bioturbating activities provides significant ecosystem services. These include the alteration of nutrients in aquatic sediment and overlying water, shelter to other species in the form of burrows in terrestrial and water ecosystems, and soil production on land.

<span class="mw-page-title-main">Algal mat</span> Microbial mat that forms on the surface of water or rocks

Algal mats are one of many types of microbial mat that forms on the surface of water or rocks. They are typically composed of blue-green cyanobacteria and sediments. Formation occurs when alternating layers of blue-green bacteria and sediments are deposited or grow in place, creating dark-laminated layers. Stromatolites are prime examples of algal mats. Algal mats played an important role in the Great Oxidation Event on Earth some 2.3 billion years ago. Algal mats can become a significant ecological problem, if the mats grow so expansive or thick as to disrupt the other underwater marine life by blocking the sunlight or producing toxic chemicals.

<span class="mw-page-title-main">Sediment–water interface</span> The boundary between bed sediment and the overlying water column

In oceanography and limnology, the sediment–water interface is the boundary between bed sediment and the overlying water column. The term usually refers to a thin layer of water at the very surface of sediments on the seafloor. In the ocean, estuaries, and lakes, this layer interacts with the water above it through physical flow and chemical reactions mediated by the micro-organisms, animals, and plants living at the bottom of the water body. The topography of this interface is often dynamic, as it is affected by physical processes and biological processes. Physical, biological, and chemical processes occur at the sediment-water interface as a result of a number of gradients such as chemical potential gradients, pore water gradients, and oxygen gradients.

<i>Beggiatoa</i> Genus of bacteria

Beggiatoa is a genus of Gammaproteobacteria belonging to the order Thiotrichales, in the Pseudomonadota phylum. This genus was one of the first bacteria discovered by Ukrainian botanist Sergei Winogradsky. During his research in Anton de Bary's laboratory of botany in 1887, he found that Beggiatoa oxidized hydrogen sulfide (H2S) as an energy source, forming intracellular sulfur droplets, with oxygen as the terminal electron acceptor and CO2 used as a carbon source. Winogradsky named it in honor of the Italian doctor and botanist Francesco Secondo Beggiato (1806 - 1883), from Venice. Winogradsky referred to this form of metabolism as "inorgoxidation" (oxidation of inorganic compounds), today called chemolithotrophy. These organisms live in sulfur-rich environments such as soil, both marine and freshwater, in the deep sea hydrothermal vents and in polluted marine environments. The finding represented the first discovery of lithotrophy. Two species of Beggiatoa have been formally described: the type species Beggiatoa alba and Beggiatoa leptomitoformis, the latter of which was only published in 2017. This colorless and filamentous bacterium, sometimes in association with other sulfur bacteria (for example the genus Thiothrix), can be arranged in biofilm visible to the naked eye formed by a very long white filamentous mat, the white color is due to the stored sulfur. Species of Beggiatoa have cells up to 200 µm in diameter and they are one of the largest prokaryotes on Earth.

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

<span class="mw-page-title-main">Purple Earth hypothesis</span> Astrobiological hypothesis regarding early photosynethetic organisms

The Purple Earth Hypothesis (PEH) is an astrobiological hypothesis first proposed by molecular biologist Shiladitya DasSarma in 2007, that the earliest photosynthetic life forms of Early Earth were based on the simpler molecule retinal rather than the more complex porphyrin-based chlorophyll, making the surface biosphere appear purplish rather its current greenish color. The time would date somewhere between 3.5 to 2.4 billion years ago, prior to the Great Oxygenation Event and Huronian glaciation.

The history of life on Earth traces the processes by which living and fossil organisms evolved, from the earliest emergence of life to present day. Earth formed about 4.5 billion years ago and evidence suggests that life emerged prior to 3.7 Ga. Although there is some evidence of life as early as 4.1 to 4.28 Ga, it remains controversial due to the possible non-biological formation of the purported fossils.

This article attempts to place key plant innovations in a geological context. It concerns itself only with novel adaptations and events that had a major ecological significance, not those that are of solely anthropological interest. The timeline displays a graphical representation of the adaptations; the text attempts to explain the nature and robustness of the evidence.

<span class="mw-page-title-main">Phototrophic biofilm</span> Microbial communities including microorganisms which use light as their energy source

Phototrophic biofilms are microbial communities generally comprising both phototrophic microorganisms, which use light as their energy source, and chemoheterotrophs. Thick laminated multilayered phototrophic biofilms are usually referred to as microbial mats or phototrophic mats. These organisms, which can be prokaryotic or eukaryotic organisms like bacteria, cyanobacteria, fungi, and microalgae, make up diverse microbial communities that are affixed in a mucous matrix, or film. These biofilms occur on contact surfaces in a range of terrestrial and aquatic environments. The formation of biofilms is a complex process and is dependent upon the availability of light as well as the relationships between the microorganisms. Biofilms serve a variety of roles in aquatic, terrestrial, and extreme environments; these roles include functions which are both beneficial and detrimental to the environment. In addition to these natural roles, phototrophic biofilms have also been adapted for applications such as crop production and protection, bioremediation, and wastewater treatment.

The Burgess Shale of British Columbia is famous for its exceptional preservation of mid-Cambrian organisms. Around 69 other sites have been discovered of a similar age, with soft tissues preserved in a similar, though not identical, fashion. Additional sites with a similar form of preservation are known from the Ediacaran and Ordovician periods.

<span class="mw-page-title-main">Cambrian substrate revolution</span> Diversification of animal burrowing

The "Cambrian substrate revolution" or "Agronomic revolution", evidenced in trace fossils, is a sudden diversification of animal burrowing during the early Cambrian period.

<span class="mw-page-title-main">Soda lake</span> Lake that is strongly alkaline

A soda lake or alkaline lake is a lake on the strongly alkaline side of neutrality, typically with a pH value between 9 and 12. They are characterized by high concentrations of carbonate salts, typically sodium carbonate, giving rise to their alkalinity. In addition, many soda lakes also contain high concentrations of sodium chloride and other dissolved salts, making them saline or hypersaline lakes as well. High pH and salinity often coincide, because of how soda lakes develop. The resulting hypersaline and highly alkalic soda lakes are considered some of the most extreme aquatic environments on Earth.

<span class="mw-page-title-main">Marine microorganisms</span> Any life form too small for the naked human eye to see that lives in a marine environment

Marine microorganisms are defined by their habitat as microorganisms living in a marine environment, that is, in the saltwater of a sea or ocean or the brackish water of a coastal estuary. A microorganism is any microscopic living organism or virus, that is too small to see with the unaided human eye without magnification. Microorganisms are very diverse. They can be single-celled or multicellular and include bacteria, archaea, viruses and most protozoa, as well as some fungi, algae, and animals, such as rotifers and copepods. Many macroscopic animals and plants have microscopic juvenile stages. Some microbiologists also classify viruses as microorganisms, but others consider these as non-living.

Arsenate-reducing bacteria are bacteria which reduce arsenates. Arsenate-reducing bacteria are ubiquitous in arsenic-contaminated groundwater (aqueous environment). Arsenates are salts or esters of arsenic acid (H3AsO4), consisting of the ion AsO43−. They are moderate oxidizers that can be reduced to arsenites and to arsine. Arsenate can serve as a respiratory electron acceptor for oxidation of organic substrates and H2S or H2. Arsenates occur naturally in minerals such as adamite, alarsite, legrandite, and erythrite, and as hydrated or anhydrous arsenates. Arsenates are similar to phosphates since arsenic (As) and phosphorus (P) occur in group 15 (or VA) of the periodic table. Unlike phosphates, arsenates are not readily lost from minerals due to weathering. They are the predominant form of inorganic arsenic in aqueous aerobic environments. On the other hand, arsenite is more common in anaerobic environments, more mobile, and more toxic than arsenate. Arsenite is 25–60 times more toxic and more mobile than arsenate under most environmental conditions. Arsenate can lead to poisoning, since it can replace inorganic phosphate in the glyceraldehyde-3-phosphate --> 1,3-biphosphoglycerate step of glycolysis, producing 1-arseno-3-phosphoglycerate instead. Although glycolysis continues, 1 ATP molecule is lost. Thus, arsenate is toxic due to its ability to uncouple glycolysis. Arsenate can also inhibit pyruvate conversion into acetyl-CoA, thereby blocking the TCA cycle, resulting in additional loss of ATP.

<span class="mw-page-title-main">Microbial oxidation of sulfur</span>

Microbial oxidation of sulfur is the oxidation of sulfur by microorganisms to build their structural components. The oxidation of inorganic compounds is the strategy primarily used by chemolithotrophic microorganisms to obtain energy to survive, grow and reproduce. Some inorganic forms of reduced sulfur, mainly sulfide (H2S/HS) and elemental sulfur (S0), can be oxidized by chemolithotrophic sulfur-oxidizing prokaryotes, usually coupled to the reduction of oxygen (O2) or nitrate (NO3). Anaerobic sulfur oxidizers include photolithoautotrophs that obtain their energy from sunlight, hydrogen from sulfide, and carbon from carbon dioxide (CO2).

<span class="mw-page-title-main">Microbialite</span>

Microbialite is a benthic sedimentary deposit made of carbonate mud that is formed with the mediation of microbes. The constituent carbonate mud is a type of automicrite ; therefore, it precipitates in situ instead of being transported and deposited. Being formed in situ, a microbialite can be seen as a type of boundstone where reef builders are microbes, and precipitation of carbonate is biotically induced instead of forming tests, shells or skeletons.

<span class="mw-page-title-main">Marine prokaryotes</span> Marine bacteria and marine archaea

Marine prokaryotes are marine bacteria and marine archaea. They are defined by their habitat as prokaryotes that live in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. All cellular life forms can be divided into prokaryotes and eukaryotes. Eukaryotes are organisms whose cells have a nucleus enclosed within membranes, whereas prokaryotes are the organisms that do not have a nucleus enclosed within a membrane. The three-domain system of classifying life adds another division: the prokaryotes are divided into two domains of life, the microscopic bacteria and the microscopic archaea, while everything else, the eukaryotes, become the third domain.

References