Ecosystem engineer

Last updated

Beavers are the prototypical ecosystem engineer because of the effects their dams have on channel flow, geomorphology, and ecology. Beaver.jpg
Beavers are the prototypical ecosystem engineer because of the effects their dams have on channel flow, geomorphology, and ecology.
Kelp are autogenic ecosystem engineers, by building the necessary structure for kelp forests Rockfish around kelp Monterey Bay Aquarium.jpg
Kelp are autogenic ecosystem engineers, by building the necessary structure for kelp forests

An ecosystem engineer is any species that creates, significantly modifies, maintains or destroys a habitat. These organisms can have a large impact on species richness and landscape-level heterogeneity of an area. [1] As a result, ecosystem engineers are important for maintaining the health and stability of the environment they are living in. Since all organisms impact the environment they live in one way or another, it has been proposed that the term "ecosystem engineers" be used only for keystone species whose behavior very strongly affects other organisms. [2]

Contents

Types

Jones et al. [3] identified two different types of ecosystem engineers:

Allogenic engineers

Allogenic engineers modify the biophysical environment by mechanically changing living or nonliving materials from one form to another. Beavers are the original model for ecosystem engineers; in the process of clearcutting and damming, beavers alter their ecosystem extensively. The addition of a dam will change both the distribution and the abundance of many organisms in the area. [2] Caterpillars are another example in that by creating shelters from leaves, they are also creating shelters for other organisms which may occupy them either simultaneously or subsequently. [4] An additional example may be that of woodpeckers or other birds who create holes in trees for them to nest in. Once these birds are through with them, the holes are used by other species of birds or mammals for housing. [2]

Autogenic engineers

Autogenic engineers modify the environment by modifying themselves. Trees are an example of this; as they grow, their trunks and branches create habitats for other living things, which may include squirrels, birds or insects. In the tropics, lianas connect trees, which allow many animals to travel exclusively through the forest canopy. [5] [ better source needed ]

Importance

Being able to identify ecosystem engineers in an environment can be important when looking at the influence these individuals may have over other organisms living in the same environment – especially in terms of resource availability. [6] It's also vital to recognize that ecosystem engineers are not organisms that directly provide others with living or dead tissue. In other words, they are identified as engineers because of their ability to modify resources, not because of their trophic effect. [7] While the impact of ecosystem engineers can be as great as keystone species, they differ in their types of impact. Keystone species are typically essential because of their trophic effect, while ecosystem engineers are not.

Similar to keystone species, a species of ecosystem engineers does not necessarily always have high abundance. Although their effect is more easily identifiable and more often a species with greater density and large per capita effect, species with smaller abundance can still have great impact. A prime example being the mud shrimp species Biffarius filholi , an ecosystem engineer with a small population density, but were evaluated to affect the temporal and spatial growth of macrofauna with their burrow structures. [8]

The presence of some ecosystem engineers has been linked to higher species richness at the landscape level. By modifying the habitat, organisms like the beaver create more habitat heterogeneity and so can support species not found elsewhere. [1] Thoughts may be that similar to other umbrella species by conserving an ecosystem engineer you may be able to protect the overall diversity of a landscape. [1] Beavers have also been shown to maintain habitats in such a way as to protect the rare Saint Francis' satyr butterfly and increase plant diversity. [9]

Biodiversity may also be affected by ecosystem engineer's ability to increase the complexity of processes within an ecosystem, potentially allowing greater species richness and diversity in the local environments. As an example, beavers have the capacity to modify riparian forest and expand wetland habitats, which results in an increase of the diversity of the habitats by allowing a greater number of species to inhabit the landscape. Coral-reef habitats, created by the ecosystem engineer coral species, hold some of the highest abundances of aquatic species in the world. [10]

Controversy

There is controversy around the usage of the term "ecosystem engineer" to classify a species, as it can be perceived as a "buzzword" to the ecological science community. The use of the term "ecosystem engineering" might suggest that the species was intentionally and consciously modifying its environment. [11] Another argument postulates that the ubiquity of ecosystem engineers translates to all species being ecosystem engineers. [12] This would invite more ecological research to be done to delve into the classification of an ecosystem engineer. [7] The generality and the specifications of identifying an ecosystem engineer has been the root of the controversy, and now more research is being conducted to definitively classify and categorize species based on their impact as an ecosystem engineer. [7]

Classification

Ecosystem engineers do have their general types, allogenic and autogenic, but further research has suggested that all organisms can fall under specific cases. [7] It was proposed that there were six specific cases. [7] These cases were differentiated by the species' ability to transform their resources to different states, as well as their ability to combat abiotic forces. A state refers to the physical condition of a material and a change in state refers to a physical abiotic or biotic material change [7]

Cases of Ecosystem Engineers [7]
Case #Autogenic or AllogenicRationaleExample
1AutogenicNot considered ecosystem engineeringAny species that are not considered ecosystem engineers.
2AllogenicTransform resources into usable and/or more beneficial formsCows, after eating grass, produce cow pats with their dung and are used by other invertebrates as a food source and a shelter.
3AutogenicOrganism transforms itself from one state to another and affects distribution and/or availability of resources and/or the traits of the physical environment.Coral and forests grow, which induce developmental change in the environment surrounding them
4AllogenicAble to transform one material from one state to anotherBeavers can take live trees and turn them into dead trees, then utilize those dead trees to build dams that are shelter for other animals and stabilize water flow in arid areas.
5AutogenicModulate extreme abiotic forces, which then controls resource flowCrustose Coralline Algae break waves and protect coral reefs from immense amounts of water force.
6AllogenicSpecies falls under one or more of these casesRibbed mussels secrete byssal threads that bind together to protect sediment and prevent erosion.

Introduced species as ecosystem engineers

Species are able to be transported across all parts of the world by humans or human-made vessels at boundless rates resulting in foreign ecosystem engineers changing the dynamics of species interactions and the possibility for engineering to occur in locations that would not have been accessible by engineers without the mediation by humans.

Introduced species, which may be invasive species, are often ecosystem engineers. Kudzu, a leguminous plant introduced to the southeast U.S., changes the distribution and number of animal and bird species in the areas it invades. It also crowds out native plant species. The zebra mussel is an ecosystem engineer in North America. By providing refuge from predators, it encourages the growth of freshwater invertebrates through increasing microhabitats. Light penetration into infected lakes also improves the ecosystem, resulting in an increase in algae. In contrast to the benefits some ecosystem engineers can cause, invasive species often have the reverse effect.

The Gordon Dam in Tasmania Gordon Dam.jpg
The Gordon Dam in Tasmania

Humans as ecosystem engineers

Humans are thought to be the most dramatic ecosystem engineers. Niche construction has been prevalent since the earliest days of human activity. [13] Through urban development, agricultural practices, logging, damming and mining, humans have changed the way they interact with the environment. This interaction is more studied in the field of human ecology. Considered both as an allogenic and autogenic engineers, humans do not necessarily fit into either category of ecosystem engineers. [7] Humans are able to mimic autogenic effects as well as implement their own allogenic effects. [7] Air-conditioning is one prime example of the way humans mimic autogenic effects [7]

Due to the complexity of many communities and ecosystems, restoration projects are often difficult. Ecosystem engineers have been proposed as a means to restore a given area to its previous state. While ideally these would all be natural agents, with today's level of development some form of human intervention may be necessary as well. In addition to being able to assist in restoration ecology, ecosystem engineers may be a helpful agent in invasive species management. [14] New fields are developing which focus on restoring those ecosystems which have been disrupted or destroyed by human activities as well as developing ecosystems that are sustainable with both human and ecological values. [15]

Examples

Terrestrial environments

Beaver dam on Smilga River in Lithuania Beaver dam on Smilga.JPG
Beaver dam on Smilga River in Lithuania

Besides the previously mentioned beaver acting as an ecosystem engineer, other terrestrial animals do the same. This may be through feeding habits, migration patterns or other behaviors that result in more permanent changes.

Research has suggested primates as ecosystem engineers as a result of their feeding strategies – frugivory and folivory – making them act as seed dispersers. [6] As a whole primates are very abundant and feed on a large quantity of fruit that is then distributed around their territory. Elephants have also been designated ecosystem engineers as they cause very large changes to their environment whether it be through feeding, digging or migratory behavior. [16]

Prairie dogs are another terrestrial form of allogenic ecosystem engineers due to the fact that the species has the ability to perform substantial modifications by burrowing and turning soil. They are able to influence soils and vegetation of the landscape while providing underground corridors for arthropods, avians, other small mammals, and reptiles. This has a positive effect on species richness and diversity of their habitats which results in the prairie dogs being labelled as keystone species. [17]

Arthropods can also be ecosystem engineers, such as spiders, ants, and many types of larvae that create shelters out of leaves, as well as gall-inducing insects that change the shapes of plants. [18] [19] Bark beetles are an ecosystem engineer of forest ecosystems and can affect fire spread and severity when attacking their host pine species. [20]

Not only animals are ecosystem engineers. Fungi are able to connect regions that are distant from one another and translocate nutrients between them. [21] Doing so they create nutritional niches for xylophagous invertebrates, [22] [23] supply trees with nitrogen translocated from previously predated animals [24] or even form an "underground pipeline" that redistributes carbon between trees. [25] Thus fungi are engineers controlling nutrient cycles in ecosystems.

Marine environments

Parrotfish Eilat Scuba Parrotfish.JPG
Parrotfish

In marine environments, filter feeders and plankton are ecosystem engineers because they alter turbidity and light penetration, controlling the depth at which photosynthesis can occur. [26] This in turn limits the primary productivity of benthic and pelagic habitats [27] and influences consumption patterns between trophic groups. [28]

Another example of ecosystem engineers in marine environments would be scleractinian corals as they create the framework for the habitat most coral-reef organisms depend on. [29] Some ecosystem engineers such as coral have help maintaining their environment. Parrotfish often help maintain coral reefs as they feed on macroalgae that competes with the coral. [30] As this relationship is mutually beneficial, a positive feedback cycle is formed between the two organisms, making them both responsible for creating and maintaining coral reef ecosystems. [30]

Whales are also being increasingly recognised for their role as ecosystem engineers despite the loss of up to 90% of their numbers during the commercial whaling era. [31] Whales defecate at the surface and release nutrients that boost the growth of phytoplankton. As whales migrate across the oceans, and move up and down the water column, they help to spread these nutrients in a process that is known as the "Whale Pump".

See also

Related Research Articles

<span class="mw-page-title-main">Ecology</span> Study of organisms and their environment

Ecology is the study of the relationships among living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history. Ecology is a branch of biology, and it is not synonymous with environmentalism.

<span class="mw-page-title-main">Marine biology</span> Scientific study of organisms that live in the ocean

Marine biology is the scientific study of the biology of marine life, organisms in the sea. Given that in biology many phyla, families and genera have some species that live in the sea and others that live on land, marine biology classifies species based on the environment rather than on taxonomy.

<span class="mw-page-title-main">Keystone species</span> Species with a large effect on its environment

A keystone species is a species that has a disproportionately large effect on its natural environment relative to its abundance, a concept introduced in 1969 by the zoologist Robert T. Paine. Keystone species play a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community. Without keystone species, the ecosystem would be dramatically different or cease to exist altogether. Some keystone species, such as the wolf, are also apex predators.

<span class="mw-page-title-main">Ecological succession</span> Process of change in the species structure of an ecological community over time

Ecological succession is the process of change in the species that make up an ecological community over time.

<span class="mw-page-title-main">Ecosystem diversity</span> Diversity and variations in ecosystems

Ecosystem diversity deals with the variations in ecosystems within a geographical location and its overall impact on human existence and the environment.

<span class="mw-page-title-main">Niche construction</span> Process by which an organism shapes its environment

Niche construction is the process by which an organism alters its own local environment. These alterations can be a physical change to the organism’s environment or encompass when an organism actively moves from one habitat to another to experience a different environment. Examples of niche construction include the building of nests and burrows by animals, and the creation of shade, influencing of wind speed, and alternation of nutrient cycling by plants. Although these alterations are often beneficial to the constructor, they are not always.

<span class="mw-page-title-main">Habitat destruction</span> Process by which a natural habitat becomes incapable of supporting its native species

Habitat destruction is the process by which a natural habitat becomes incapable of supporting its native species. The organisms that previously inhabited the site are displaced or dead, thereby reducing biodiversity and species abundance. Habitat destruction is the leading cause of biodiversity loss. Fragmentation and loss of habitat have become one of the most important topics of research in ecology as they are major threats to the survival of endangered species.

<span class="mw-page-title-main">Reconciliation ecology</span> Study of maintaining biodiversity in human-dominated ecosystems

Reconciliation ecology is the branch of ecology which studies ways to encourage biodiversity in the human-dominated ecosystems of the anthropocene era. Michael Rosenzweig first articulated the concept in his book Win-Win Ecology, based on the theory that there is not enough area for all of earth's biodiversity to be saved within designated nature preserves. Therefore, humans should increase biodiversity in human-dominated landscapes. By managing for biodiversity in ways that do not decrease human utility of the system, it is a "win-win" situation for both human use and native biodiversity. The science is based in the ecological foundation of human land-use trends and species-area relationships. It has many benefits beyond protection of biodiversity, and there are numerous examples of it around the globe. Aspects of reconciliation ecology can already be found in management legislation, but there are challenges in both public acceptance and ecological success of reconciliation attempts.

<span class="mw-page-title-main">Intermediate disturbance hypothesis</span> Model proposing regional biodiversity is increased by a moderate level of ecological disturbance

The intermediate disturbance hypothesis (IDH) suggests that local species diversity is maximized when ecological disturbance is neither too rare nor too frequent. At low levels of disturbance, more competitive organisms will push subordinate species to extinction and dominate the ecosystem. At high levels of disturbance, due to frequent forest fires or human impacts like deforestation, all species are at risk of going extinct. According to IDH theory, at intermediate levels of disturbance, diversity is thus maximized because species that thrive at both early and late successional stages can coexist. IDH is a nonequilibrium model used to describe the relationship between disturbance and species diversity. IDH is based on the following premises: First, ecological disturbances have major effects on species richness within the area of disturbance. Second, interspecific competition results in one species driving a competitor to extinction and becoming dominant in the ecosystem. Third, moderate ecological scale disturbances prevent interspecific competition.

Soil ecology is the study of the interactions among soil organisms, and between biotic and abiotic aspects of the soil environment. It is particularly concerned with the cycling of nutrients, formation and stabilization of the pore structure, the spread and vitality of pathogens, and the biodiversity of this rich biological community.

<span class="mw-page-title-main">Community (ecology)</span> Associated populations of species in a given area

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

Any action or influence that species have on each other is considered a biological interaction. These interactions between species can be considered in several ways. One such way is to depict interactions in the form of a network, which identifies the members and the patterns that connect them. Species interactions are considered primarily in terms of trophic interactions, which depict which species feed on others.

<span class="mw-page-title-main">Marine habitat</span> Habitat that supports marine life

A marine habitat is a habitat that supports marine life. Marine life depends in some way on the saltwater that is in the sea. A habitat is an ecological or environmental area inhabited by one or more living species. The marine environment supports many kinds of these habitats.

Ecological inheritance occurs when organisms inhabit a modified environment that a previous generation created; it was first described in Odling-Smee (1988) and Odling-Smee et al. (1996) as a consequence of niche construction. Standard evolutionary theory focuses on the influence that natural selection and genetic inheritance has on biological evolution, when individuals that survive and reproduce also transmit genes to their offspring. If offspring do not live in a modified environment created by their parents, then niche construction activities of parents do not affect the selective pressures of their offspring. However, when niche construction affects multiple generations, ecological inheritance acts a inheritance system different than genetic inheritance.

<span class="mw-page-title-main">Soundscape ecology</span> Study of the effect of environmental sound on organisms

Soundscape ecology is the study of the acoustic relationships between living organisms, human and other, and their environment, whether the organisms are marine or terrestrial. First appearing in the Handbook for Acoustic Ecology edited by Barry Truax, in 1978, the term has occasionally been used, sometimes interchangeably, with the term acoustic ecology. Soundscape ecologists also study the relationships between the three basic sources of sound that comprise the soundscape: those generated by organisms are referred to as the biophony; those from non-biological natural categories are classified as the geophony, and those produced by humans, the anthropophony.

<span class="mw-page-title-main">Mesophotic coral reef</span>

A Mesophotic coral reef or mesophotic coral ecosystem (MCE), originally from the Latin word meso (meaning middle) and photic (meaning light), is characterised by the presence of both light-dependent coral and algae, and organisms that can be found in water with low light penetration. Mesophotic Coral Ecosystem (MCEs) is a new, widely-adopted term used to refer to mesophotic coral reefs, as opposed to other similar terms like "deep coral reef communities" and "twilight zone", since those terms sometimes are confused due to their unclear, interchangeable nature.

<span class="mw-page-title-main">Biodiversity loss</span> Extinction of species and local ecosystem loss reduction or loss of species in a given habitat

Biodiversity loss includes the worldwide extinction of different species, as well as the local reduction or loss of species in a certain habitat, resulting in a loss of biological diversity. The latter phenomenon can be temporary or permanent, depending on whether the environmental degradation that leads to the loss is reversible through ecological restoration/ecological resilience or effectively permanent. The current global extinction, has resulted in a biodiversity crisis being driven by human activities which push beyond the planetary boundaries and so far has proven irreversible.

<span class="mw-page-title-main">Ecosystem collapse</span> Ecological communities abruptly losing biodiversity, often irreversibly

An ecosystem, short for ecological system, is defined as a collection of interacting organisms within a biophysical environment. Ecosystems are never static, and are continually subject to stabilizing and destabilizing processes alike. Stabilizing processes allow ecosystems to adequately respond to destabilizing changes, or pertubations, in ecological conditions, or to recover from degradation induced by them: yet, if destabilizing processes become strong enough or fast enough to cross a critical threshold within that ecosystem, often described as an ecological 'tipping point', then an ecosystem collapse occurs.

<span class="mw-page-title-main">Marine coastal ecosystem</span> Wildland-ocean interface

A marine coastal ecosystem is a marine ecosystem which occurs where the land meets the ocean. Marine coastal ecosystems include many very different types of marine habitats, each with their own characteristics and species composition. They are characterized by high levels of biodiversity and productivity.

<span class="mw-page-title-main">Facilitation cascade</span> Beneficial ecological chain reaction

A facilitation cascade is a sequence of ecological interactions that occur when a species benefits a second species that in turn has a positive effect on a third species. These facilitative interactions can take the form of amelioration of environmental stress and/or provision of refuge from predation. Autogenic ecosystem engineering species, structural species, habitat-forming species, and foundation species are associated with the most commonly recognized examples of facilitation cascades, sometimes referred to as a habitat cascades. Facilitation generally is a much broader concept that includes all forms of positive interactions including pollination, seed dispersal, and co-evolved commensalism and mutualistic relationships, such as between cnidarian hosts and symbiodinium in corals, and between algae and fungi in lichens. As such, facilitation cascades are widespread through all of the earth's major biomes with consistently positive effects on the abundance and biodiversity of associated organisms.

References

  1. 1 2 3 Wright, Justin P; Jones, Clive G; Flecker, Alexander S (2002). "An ecosystem engineer, the beaver, increases species richness at the landscape scale". Ecosystems Ecology. 132 (1): 96–101. Bibcode:2002Oecol.132...96W. doi:10.1007/s00442-002-0929-1. PMID   28547281. S2CID   5940275.
  2. 1 2 3 Haemig, PD (2012). "Ecosystem Engineers: wildlife that create, modify and maintain habitats". ecology.info. Archived from the original on 6 May 2021.
  3. Jones, CG; Lawton, JH; Shachak, M (1994). "Organisms as ecosystem engineers". Oikos. 69 (3): 373–386. doi:10.2307/3545850. JSTOR   3545850.
  4. Jones, CG; Lawton, JH; Shachak, M (1997). "Positive and negative effects of organisms as physical ecosystem engineers". Ecology. 78 (7): 1946–1957. doi:10.2307/2265935. JSTOR   2265935.
  5. "Ecosystem engineer".
  6. 1 2 Chapman, Colin A; et al. (2013). "Are primates ecosystem engineers?". International Journal of Primatology. 34: 1–14. doi:10.1007/s10764-012-9645-9. S2CID   3343186.
  7. 1 2 3 4 5 6 7 8 9 10 Jones, Clive G.; Lawton, John H.; Shachak, Moshe (1994). "Organisms as Ecosystem Engineers". Oikos. 69 (3): 373–386. doi:10.2307/3545850. ISSN   0030-1299. JSTOR   3545850.
  8. Berkenbusch, K.; Rowden, A.A. (2003). "Ecosystem engineering — moving away from 'just-so' stories". New Zealand Journal of Ecology. 27 (1): 67–73. ISSN   0110-6465. JSTOR   24058163.
  9. Bartel, Rebecca A; Haddad, Nick M; Wright, Justin P (2010). "Ecosystem engineers maintain a rare species of butterfly and increase plant diversity". Oikos. 119 (5): 883–890. doi:10.1111/j.1600-0706.2009.18080.x.
  10. Caliman, Adriano; Carneiro, Luciana S.; Leal, João J. F.; Farjalla, Vinicius F.; Bozelli, Reinaldo L.; Esteves, Francisco A. (1 September 2013). "Biodiversity effects of ecosystem engineers are stronger on more complex ecosystem processes". Ecology. 94 (9): 1977–1985. doi:10.1890/12-1385.1. ISSN   1939-9170. PMID   24279269.
  11. Power, Mary E. (1 July 1997). "Ecosystem engineering by organisms: why semantics matters Reply from M. Power". Trends in Ecology & Evolution. 12 (7): 275–276. doi:10.1016/S0169-5347(97)81020-8. ISSN   0169-5347. PMID   21238069.
  12. Reichman, O. J; Seabloom, Eric W (1 July 2002). "Ecosystem engineering: a trivialized concept?: Response from Reichman and Seabloom". Trends in Ecology & Evolution. 17 (7): 308. doi:10.1016/S0169-5347(02)02512-0. ISSN   0169-5347.
  13. Smith, Bruce D. (30 March 2007). "The Ultimate Ecosystem Engineers". Science. 315 (5820): 1797–1798. doi:10.1126/science.1137740. ISSN   0036-8075. PMID   17395815. S2CID   21409034.
  14. Byers, James E; et al. (2006). "Using ecosystem engineers to restore ecological systems". Ecology and Evolution. 21 (9): 493–500. doi:10.1016/j.tree.2006.06.002. PMID   16806576.
  15. Mitsch, William J (2012). "What is ecological engineering?". Ecological Engineering. 45: 5–12. doi:10.1016/j.ecoleng.2012.04.013. S2CID   145370880.
  16. Haynes, Gary (2012). "Elephants (And extinct relatives) as earth-movers and ecosystem engineers". Geomorphology. 157–158: 99–107. Bibcode:2012Geomo.157...99H. doi:10.1016/j.geomorph.2011.04.045.
  17. Baker, Bruce W.; Augustine, David J.; Sedgwick, James A.; Lubow, Bruce C. (1 February 2013). "Ecosystem engineering varies spatially: a test of the vegetation modification paradigm for prairie dogs". Ecography. 36 (2): 230–239. doi:10.1111/j.1600-0587.2012.07614.x. ISSN   1600-0587.
  18. Cornelissen, T; Cintra, F; Santos, J C (2 December 2015). "Shelter-Building Insects and Their Role as Ecosystem Engineers". Neotropical Entomology. 45 (1): 1–12. doi:10.1007/s13744-015-0348-8. PMID   26631227. S2CID   17978664 . Retrieved 15 June 2021.
  19. Pereira, Cássio Cardoso; Novais, Samuel; Barbosa, Milton; Negreiros, Daniel; Gonçalves‐Souza, Thiago; Roslin, Tomas; Marquis, Robert; Marino, Nicholas; Novotny, Vojtech; Orivel, Jerome; Sui, Shen (April 2022). "Subtle structures with not‐so‐subtle functions: A data set of arthropod constructs and their host plants". Ecology. 103 (4): e3639. doi: 10.1002/ecy.3639 . ISSN   0012-9658. PMID   35060615. S2CID   246079018.
  20. Harvey, Brian J.; Donato, Daniel C.; Romme, William H.; Turner, Monica G. (2014). "Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions". Ecological Applications. 24 (7): 1608–1625. doi:10.1890/13-1851.1. ISSN   1051-0761. PMID   29210226.
  21. Boddy, Lynne; Watkinson, Sarah C. (31 December 1995). "Wood decomposition, higher fungi, and their role in nutrient redistribution". Canadian Journal of Botany. 73 (S1): 1377–1383. doi:10.1139/b95-400.
  22. Filipiak, Michał; Sobczyk, Łukasz; Weiner, January (9 April 2016). "Fungal Transformation of Tree Stumps into a Suitable Resource for Xylophagous Beetles via Changes in Elemental Ratios". Insects. 7 (2): 13. doi: 10.3390/insects7020013 . PMC   4931425 .
  23. Filipiak, Michał; Weiner, January; Wilson, Richard A. (23 December 2014). "How to Make a Beetle Out of Wood: Multi-Elemental Stoichiometry of Wood Decay, Xylophagy and Fungivory". PLOS ONE. 9 (12): e115104. Bibcode:2014PLoSO...9k5104F. doi: 10.1371/journal.pone.0115104 . PMC   4275229 . PMID   25536334.
  24. Wardle, D. A. (11 June 2004). "Ecological Linkages Between Aboveground and Belowground Biota". Science. 304 (5677): 1629–1633. Bibcode:2004Sci...304.1629W. doi:10.1126/science.1094875. PMID   15192218. S2CID   36949807.
  25. Klein, T.; Siegwolf, R. T. W.; Korner, C. (14 April 2016). "Belowground carbon trade among tall trees in a temperate forest". Science. 352 (6283): 342–344. Bibcode:2016Sci...352..342K. doi:10.1126/science.aad6188. PMID   27081070. S2CID   33458007.
  26. Berke, Sarah K (2012). "Functional Groups of Ecosystem Engineers: A Proposed Classification with Comments on Current Issues". Integrative and Comparative Biology. 50 (2): 147–157. doi: 10.1093/icb/icq077 . PMID   21558195.
  27. Abrahams, MV; Kattenfeld, MG (1997). "The role of turbidity as a constraint on predator–prey interactions in aquatic environments". Behavioral Ecology and Sociobiology. 40 (3): 169–74. doi:10.1007/s002650050330. S2CID   24748783.
  28. Hartman, EJ; Abrahams, MV (2000). "Sensory compensation and the detection of predators: the interaction between chemical and visual information". Proceedings of the Royal Society B: Biological Sciences. 267 (1443): 571–75. doi:10.1098/rspb.2000.1039. PMC   1690576 . PMID   10787160.
  29. Wild, Christian; et al. (2011). "Climate change impedes scleractinian corals as primary reef ecosystem engineers". Marine and Freshwater Research. 62 (2): 205–215. doi: 10.1071/mf10254 .
  30. 1 2 Bozec, Yves-Marie; et al. (2013). "Reciprocal facilitation and non-linearity maintain habitat engineering on coral reefs". Oikos. 122 (3): 428–440. CiteSeerX   10.1.1.457.9673 . doi:10.1111/j.1600-0706.2012.20576.x.
  31. Roman, Joe; Estes, James A; Morissette, Lyne; Smith, Craig; Costa, Daniel; McCarthy, James; Nation, Jb; Nicol, Stephen; Pershing, Andrew; Smetacek, Victor (September 2014). "Whales as marine ecosystem engineers". Frontiers in Ecology and the Environment. 12 (7): 377–385. doi:10.1890/130220. ISSN   1540-9295.

Bibliography