Trophic state index

Last updated
Lake George, New York, an oligotrophic lake Lake George from village beach.jpg
Lake George, New York, an oligotrophic lake

The Trophic State Index (TSI) is a classification system designed to rate water bodies based on the amount of biological productivity they sustain. [1] Although the term "trophic index" is commonly applied to lakes, any surface water body may be indexed.

Contents

The TSI of a water body is rated on a scale from zero to one hundred. [1] Under the TSI scale, water bodies may be defined as: [1]

The quantities of nitrogen, phosphorus, and other biologically useful nutrients are the primary determinants of a water body's TSI. Nutrients such as nitrogen and phosphorus tend to be limiting resources in standing water bodies, so increased concentrations tend to result in increased plant growth, followed by corollary increases in subsequent trophic levels. [lower-alpha 1] Consequently, trophic index may sometimes be used to make a rough estimate of biological condition of water bodies. [2]

Carlson's Trophic State Index

Carlson's index was proposed by Robert Carlson in his 1977 seminal paper, "A trophic state index for lakes". [3] It is one of the more commonly used trophic indices and is the trophic index used by the United States Environmental Protection Agency. [2] The trophic state is defined as the total weight of biomass in a given water body at the time of measurement. Because they are of public concern, the Carlson index uses the algal biomass as an objective classifier of a lake or other water body's trophic status. [3] According to the US EPA, the Carlson Index should only be used with lakes that have relatively few rooted plants and non-algal turbidity sources. [2]

Index variable

Because they tend to correlate, three independent variables can be used to calculate the Carlson Index: chlorophyll pigments , total phosphorus and Secchi depth . Of these three, chlorophyll will probably yield the most accurate measures, as it is the most accurate predictor of biomass. Phosphorus may be a more accurate estimation of a water body's summer trophic status than chlorophyll if the measurements are made during the winter. Finally, the Secchi depth is probably the least accurate measure, but also the most affordable and expedient one. Consequently, citizen monitoring programs and other volunteer or large-scale surveys will often use the Secchi depth. By translating the Secchi transparency values to a log base 2 scale, each successive doubling of biomass is represented as a whole integer index number. [4] The Secchi depth, which measures water transparency, indicates the concentration of dissolved and particulate material in the water, which in turn can be used to derive the biomass. This relationship is expressed in the following equation:

where z = the depth at which the disk disappears,
I0 is the intensity of light striking the water's surface,
Iz is about 10% of I0 and is considered a constant,
kw is a coefficient for the attenuation of light by water and dissolved substances,
α is treated as a constant with the units of square meters per milligram and
C is the concentration of particulate matter in units for milligrams per cubic meter. [3]

Trophic classifications

A lake is usually classified as being in one of three possible classes: oligotrophic, mesotrophic or eutrophic. Lakes with extreme trophic indices may also be considered hyperoligotrophic or hypereutrophic (also "hypertrophic"). The table below demonstrates how the index values translate into trophic classes.

Relationships between Trophic State Index, chlorophyll, phosphorus, Secchi depth, and trophic class (after Carlson 1996) [4]
Trophic State IndexChlorophyll (µg/L)Phosphorus (µg/L)Secchi depth (m)Trophic Class
< 30—400—2.60—12> 8—4Oligotrophic or hipotrophic
40—502.6—7.312—244—2Mesotrophic
50—707.3—5624—962—0.5Eutrophic
70—100+56—155+96—384+0.5— < 0.25Hypertrophic

Oligotrophic lakes generally host very little or no aquatic vegetation and are relatively clear, while eutrophic lakes tend to host large quantities of organisms, including algal blooms. Each trophic class supports different types of fish and other organisms, as well. If the algal biomass in a lake or other water body reaches too high a concentration (say >80 TSI), massive fish die-offs may occur as decomposing biomass deoxygenates the water.

Oligotrophic

Kurtkowiec Lake, an oligotrophic lake in the Tatra Mountains of southern Poland 20161001 Kurtkowiec i Czerwone Stawy Gasienicowe 1730.jpg
Kurtkowiec Lake, an oligotrophic lake in the Tatra Mountains of southern Poland

Limnologists use the term "oligotrophic" or "hipotrophic" to describe lakes that have low primary productivity due to nutrient deficiency. (This contrasts against eutrophic lakes, which are highly productive due to an ample supply of nutrients, as can arise from human activities such as agriculture in the watershed.)

Oligotrophic lakes are most common in cold, sparsely developed regions that are underlain by crystalline igneous, granitic bedrock. Due to their low algal production, these lakes consequently have very clear waters, with high drinking-water quality.

Lakes that have intermixing of their layers are classified into the category of holomictic, whereas lakes that do not have interlayer mixing are permanently stratified and thus are termed meromictic.

Generally, in a holomictic lake, during the fall, the cooling of the epilimnion reduces lake stratification, thereby allowing for mixing to occur. Winds aid in this process. [5] Thus it is the deep mixing of lakes (which occurs most often during the fall and early winter, in holomictic lakes of the monomictic subtype) that allows oxygen to be transported from the epilimnion to the hypolimnion. [6] [7] [8]

In this way, oligotrophic lakes can have significant oxygen down to the depth to which the aforementioned seasonal mixing occurs, but they will be oxygen deficient below this depth. Therefore, oligotrophic lakes often support fish species such as lake trout, which require cold, well-oxygenated waters. The oxygen content of these lakes is a function of their seasonally mixed hypolimnetic volume. Hypolimnetic volumes that are anoxic will result in fish congregating in areas where oxygen is sufficient for their needs. [6]

Anoxia is more common in the hypolimnion during the summer when mixing does not occur. [5] In the absence of oxygen from the epilimnion, decomposition can cause hypoxia in the hypolimnion. [9]

Mesotrophic

Mesotrophic lakes are lakes with an intermediate level of productivity. These lakes are commonly clear water lakes and ponds with beds of submerged aquatic plants and medium levels of nutrients.

The term mesotrophic is also applied to terrestrial habitats. Mesotrophic soils have moderate nutrient levels.

Eutrophic and hypertrophic

Eutrophic

Algal bloom in a village river in the mountains near Chengdu, Sichuan, China River algae Sichuan.jpg
Algal bloom in a village river in the mountains near Chengdu, Sichuan, China

A eutrophic water body, commonly a lake or pond, has high biological productivity. Due to excessive nutrients, especially nitrogen and phosphorus, these water bodies are able to support an abundance of aquatic plants. Usually, the water body will be dominated either by aquatic plants or algae. When aquatic plants dominate, the water tends to be clear. When algae dominate, the water tends to be darker. The algae engage in photosynthesis which supplies oxygen to the fish and biota which inhabit these waters. Occasionally, an excessive algal bloom will occur and can ultimately result in fish death, due to respiration by algae and bottom-living bacteria. The process of eutrophication can occur naturally and by human impact on the environment.

Eutrophic comes from the Greek eutrophos meaning "well-nourished", from eu meaning good and trephein meaning "to nourish". [10]

Hypertrophic

Hypertrophic or hypereutrophic lakes are very nutrient-rich lakes characterized by frequent and severe nuisance algal blooms and low transparency. Hypereutrophic lakes have a visibility depth of less than 3 feet (90 cm), they have greater than 40 micrograms/litre total chlorophyll and greater than 100 micrograms/litre phosphorus.

The excessive algal blooms can also significantly reduce oxygen levels and prevent life from functioning at lower depths creating dead zones beneath the surface.

Likewise, large algal blooms can cause biodilution to occur, which is a decrease in the concentration of a pollutant with an increase in trophic level. This is opposed to biomagnification and is due to a decreased concentration from increased algal uptake.

Trophic index drivers

Both natural and anthropogenic factors can influence a lake or other water body's trophic index. A water body situated in a nutrient-rich region with high net primary productivity may be naturally eutrophic. Nutrients carried into water bodies from non-point sources such as agricultural runoff, residential fertilisers, and sewage will all increase the algal biomass, and can easily cause an oligotrophic lake to become hypereutrophic. [11] [12] [13]

Freshwater lakes

Although there is no absolute consensus as to which nutrients contribute the most to increasing primary productivity, phosphorus concentration is thought to be the main limiting factor in freshwater lakes. [14] [15] [16] This is likely due to the prevalence of nitrogen-fixing microorganisms in these systems, which can compensate for a lack of readily available fixed nitrogen. [16]

Marine ecosystems

In some coastal marine ecosystems, research has found nitrogen to be the key limiting nutrient, driving primary production independently of phosphorus. [17] [18] Nitrogen fixation cannot adequately supply these marine ecosystems, because the nitrogen fixing microbes are themselves limited by the availability of various abiotic factors like sunlight and dissolved oxygen. [19] However, marine ecosystems are too broad a range of environments for one nutrient to limit all marine primary productivity. The limiting nutrient may vary in different marine environments according to a variety of factors like depth, distance from shore, or availability of organic matter. [20] [19]

Management targets

Often, the desired trophic index differs between stakeholders. Water-fowl enthusiasts (e.g. duck hunters) may want a lake to be eutrophic so that it will support a large population of waterfowl. Residents, though, may want the same lake to be oligotrophic, as this is more pleasant for swimming and boating. Natural resource agencies are generally responsible for reconciling these conflicting uses and determining what a water body's trophic index should be.

See also

Notes

  1. Note that this use of trophic levels refers to feeding dynamics, and has a much different meaning than the trophic index of water bodies.

Related Research Articles

<span class="mw-page-title-main">Algal bloom</span> Spread of planktonic algae in water

An algal bloom or algae bloom is a rapid increase or accumulation in the population of algae in freshwater or marine water systems. It is often recognized by the discoloration in the water from the algae's pigments. The term algae encompasses many types of aquatic photosynthetic organisms, both macroscopic multicellular organisms like seaweed and microscopic unicellular organisms like cyanobacteria. Algal bloom commonly refers to the rapid growth of microscopic unicellular algae, not macroscopic algae. An example of a macroscopic algal bloom is a kelp forest.

<span class="mw-page-title-main">Eutrophication</span> Excessive plant growth in water

Eutrophication is a general term describing a process in which nutrients accumulate in a body of water, resulting in an increased growth of microorganisms that may deplete the water of oxygen. It has been defined as "degradation of water quality owing to enrichment by nutrients, primarily nitrogen (N) and phosphorus (P) which results in excessive plant growth and decay." Manmade or "cultural eutrophication" is often a more rapid process in which a variety of polluting inputs including poorly treated sewage, industrial wastewater, and fertilizer runoff flows into the water. Such nutrient pollution usually causes algal blooms and bacterial growth, resulting in the depletion of dissolved oxygen in water and causing substantial environmental degradation.

<span class="mw-page-title-main">Estuary</span> Partially enclosed coastal body of brackish water

An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with a free connection to the open sea. Estuaries form a transition zone between river environments and maritime environments and are an example of an ecotone. Estuaries are subject both to marine influences such as tides, waves, and the influx of saline water, and to fluvial influences such as flows of freshwater and sediment. The mixing of seawater and freshwater provides high levels of nutrients both in the water column and in sediment, making estuaries among the most productive natural habitats in the world.

<span class="mw-page-title-main">Limnology</span> Science of inland aquatic ecosystems

Limnology is the study of inland aquatic ecosystems. The study of limnology includes aspects of the biological, chemical, physical, and geological characteristics of fresh and saline, natural and man-made bodies of water. This includes the study of lakes, reservoirs, ponds, rivers, springs, streams, wetlands, and groundwater. Water systems are often categorized as either running (lotic) or standing (lentic).

<span class="mw-page-title-main">Lake Okeechobee</span> Natural freshwater lake in Florida, United States

Lake Okeechobee is the largest freshwater lake in the U.S. state of Florida. It is the tenth largest natural freshwater lake among the 50 states of the United States and the second-largest natural freshwater lake contained entirely within the contiguous 48 states, after Lake Michigan.

<span class="mw-page-title-main">Dead zone (ecology)</span> Low-oxygen areas in coastal zones and lakes caused by eutrophication

Dead zones are hypoxic (low-oxygen) areas in the world's oceans and large lakes. Hypoxia occurs when dissolved oxygen (DO) concentration falls to or below 2 mg of O2/liter. When a body of water experiences hypoxic conditions, aquatic flora and fauna begin to change behavior in order to reach sections of water with higher oxygen levels. Once DO declines below 0.5 ml O2/liter in a body of water, mass mortality occurs. With such a low concentration of DO, these bodies of water fail to support the aquatic life living there. Historically, many of these sites were naturally occurring. However, in the 1970s, oceanographers began noting increased instances and expanses of dead zones. These occur near inhabited coastlines, where aquatic life is most concentrated.

<span class="mw-page-title-main">Paleolimnology</span> Scientific study of ancient lakes and streams

Paleolimnology is a scientific sub-discipline closely related to both limnology and paleoecology. Paleolimnological studies focus on reconstructing the past environments of inland waters using the geologic record, especially with regard to events such as climatic change, eutrophication, acidification, and internal ontogenic processes.

<span class="mw-page-title-main">Picoplankton</span> Fraction of plankton between 0.2 and 2 μm

Picoplankton is the fraction of plankton composed by cells between 0.2 and 2 μm that can be either prokaryotic and eukaryotic phototrophs and heterotrophs:

<span class="mw-page-title-main">Phosphorus cycle</span> Biogeochemical movement

The phosphorus cycle is the biogeochemical cycle that describes the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based compounds are usually solids at the typical ranges of temperature and pressure found on Earth. The production of phosphine gas occurs in only specialized, local conditions. Therefore, the phosphorus cycle should be viewed from whole Earth system and then specifically focused on the cycle in terrestrial and aquatic systems.

Monomictic lakes are holomictic lakes that mix from top to bottom during one mixing period each year. Monomictic lakes may be subdivided into cold and warm types.

<span class="mw-page-title-main">Human impact on the nitrogen cycle</span>

Human impact on the nitrogen cycle is diverse. Agricultural and industrial nitrogen (N) inputs to the environment currently exceed inputs from natural N fixation. As a consequence of anthropogenic inputs, the global nitrogen cycle (Fig. 1) has been significantly altered over the past century. Global atmospheric nitrous oxide (N2O) mole fractions have increased from a pre-industrial value of ~270 nmol/mol to ~319 nmol/mol in 2005. Human activities account for over one-third of N2O emissions, most of which are due to the agricultural sector. This article is intended to give a brief review of the history of anthropogenic N inputs, and reported impacts of nitrogen inputs on selected terrestrial and aquatic ecosystems.

<span class="mw-page-title-main">Dystrophic lake</span> Lake that contains high amounts of humic substances and organic acids

Dystrophic lakes, also known as humic lakes, are lakes that contain high amounts of humic substances and organic acids. The presence of these substances causes the water to be brown in colour and have a generally low pH of around 4.0-6.0. Due to these acidic conditions, there is little biodiversity able to survive, consisting mostly of algae, phytoplankton, picoplankton, and bacteria. Ample research has been performed on the many dystrophic lakes located in Eastern Poland, but dystrophic lakes can be found in many areas of the world.

The deep chlorophyll maximum (DCM), also called the subsurface chlorophyll maximum, is the region below the surface of water with the maximum concentration of chlorophyll. The DCM generally exists at the same depth as the nutricline, the region of the ocean where the greatest change in the nutrient concentration occurs with depth.

An Olszewski tube is a pipe designed to bring oxygen-poor water from the bottom of a lake to the top. This tube was first proposed by a Polish limnologist named Przemysław Olszewski in 1961 and helps combat the negative effects of eutrophication, high nutrient content, in lakes. The basic concept behind the Olszewski tube is the reduction of nutrient concentration and destratification; the more specific goal is hypolimnetic withdrawal.

<span class="mw-page-title-main">Bacterioplankton</span> Bacterial component of the plankton that drifts in the water column

Bacterioplankton refers to the bacterial component of the plankton that drifts in the water column. The name comes from the Ancient Greek word πλανκτος, meaning "wanderer" or "drifter", and bacterium, a Latin term coined in the 19th century by Christian Gottfried Ehrenberg. They are found in both seawater and freshwater.

The trophic level index (TLI) is used in New Zealand as a measure of nutrient status of lakes. It is similar to the trophic state index but was proposed as alternative that suited New Zealand.

<span class="mw-page-title-main">Mille Lacs Lake</span> Lake in the state of Minnesota, United States

Mille Lacs Lake is a large but shallow lake in the U.S. state of Minnesota. It is located in the counties of Mille Lacs, Aitkin, and Crow Wing, roughly 75 miles north of the Minneapolis-St. Paul metropolitan area.

PCLake is a dynamic, mathematical model used to study eutrophication effects in shallow lakes and ponds. PCLake models explicitly the most important biotic groups and their interrelations, within the general framework of nutrient cycles. PCLake is used both by scientist and water managers. PCLake is in 2019 extended to PCLake+, which can be applied to stratifying lakes.

<i>Gloeotrichia</i> Genus of bacteria

Gloeotrichia is a large (~2 mm) colonial genus of Cyanobacteria, belonging to the order Nostocales. The name Gloeotrichia is derived from its appearance of filamentous body with mucilage matrix. Found in lakes across the globe, gloeotrichia are notable for the important roles that they play in the nitrogen and phosphorus cycles. Gloeotrichia are also a species of concern for lake managers, as they have been shown to push lakes towards eutrophication and produce deadly toxins.

Lake 226 is one lake in Canada's Experimental Lakes Area (ELA) in Ontario. The ELA is a freshwater and fisheries research facility that operated these experiments alongside Fisheries and Oceans Canada and Environment Canada. In 1968 this area in northwest Ontario was set aside for limnological research, aiming to study the watershed of the 58 small lakes in this area. The ELA projects began as a response to the claim that carbon was the limiting agent causing eutrophication of lakes rather than phosphorus, and that monitoring phosphorus in the water would be a waste of money. This claim was made by soap and detergent companies, as these products do not biodegrade and can cause buildup of phosphates in water supplies that lead to eutrophication. The theory that carbon was the limiting agent was quickly debunked by the ELA Lake 227 experiment that began in 1969, which found that carbon could be drawn from the atmosphere to remain proportional to the input of phosphorus in the water. Experimental Lake 226 was then created to test phosphorus' impact on eutrophication by itself.

References

  1. 1 2 3 University of South Florida Water Institute. "Trophic State Index (TSI)". Learn More About Trophic State Index (TSI) - Lake.WaterAtlas.org. University of South Florida. Retrieved 6 June 2018.
  2. 1 2 3 "Carlson's Trophic State Index. Aquatic Biodiversity". United States Environmental Protection Agency. 2007. Retrieved 17 February 2008.
  3. 1 2 3 Carlson, R.E. (1977) A trophic state index for lakes. Limnology and Oceanography. 22:2 361–369.
  4. 1 2 Carlson R.E. and J. Simpson (1996) A Coordinator's Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society. 96 pp.
  5. 1 2 Dodds, Walter K. (2010). Freshwater ecology : concepts and environmental applications of limnology. Whiles, Matt R. (2nd ed.). Burlington, MA: Academic Press. ISBN   978-0-12-374724-2. OCLC   784140625.
  6. 1 2 Sánchez-España, Javier; Mata, M. Pilar; Vegas, Juana; Morellón, Mario; Rodríguez, Juan Antonio; Salazar, Ángel; Yusta, Iñaki; Chaos, Aida; Pérez-Martínez, Carmen; Navas, Ana (2017-12-01). "Anthropogenic and climatic factors enhancing hypolimnetic anoxia in a temperate mountain lake". Journal of Hydrology. 555: 832–850. Bibcode:2017JHyd..555..832S. doi:10.1016/j.jhydrol.2017.10.049. ISSN   0022-1694.
  7. Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.; Coats, R. (2010-07-09). "Effects of climate change on thermal properties of lakes and reservoirs, and possible implications". Stochastic Environmental Research and Risk Assessment. 25 (4): 445–456. doi: 10.1007/s00477-010-0414-z . ISSN   1436-3240.
  8. Dissolved Oxygen. Fondriest Environmental Products, access date 2024-2-14.
  9. Weinke, Anthony D.; Biddanda, Bopaiah A. (2019-12-01). "Influence of episodic wind events on thermal stratification and bottom water hypoxia in a Great Lakes estuary". Journal of Great Lakes Research. 45 (6): 1103–1112. doi: 10.1016/j.jglr.2019.09.025 . ISSN   0380-1330. S2CID   209571196.
  10. Definition of eutrophic at dictionary.com.
  11. Tilman, David (1999-05-25). "Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices". Proceedings of the National Academy of Sciences. 96 (11): 5995–6000. doi: 10.1073/pnas.96.11.5995 . ISSN   0027-8424. PMC   34218 . PMID   10339530.
  12. Lapointe, Brian E.; Herren, Laura W.; Debortoli, David D.; Vogel, Margaret A. (2015-03-01). "Evidence of sewage-driven eutrophication and harmful algal blooms in Florida's Indian River Lagoon". Harmful Algae. 43: 82–102. doi:10.1016/j.hal.2015.01.004. ISSN   1568-9883.
  13. Toor, Gurpal S.; Occhipinti, Marti L.; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence (2017-06-12). "Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff". PLOS ONE. 12 (6): e0179151. doi: 10.1371/journal.pone.0179151 . ISSN   1932-6203. PMC   5467952 . PMID   28604811.
  14. Schindler, David W.; Hecky, R. E.; Findlay, D. L.; Stainton, M. P.; Parker, B. R.; Paterson, M. J.; Beaty, K. G.; Lyng, M.; Kasian, S. E. M. (2008-08-12). "Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment". Proceedings of the National Academy of Sciences. 105 (32): 11254–11258. doi: 10.1073/pnas.0805108105 . ISSN   0027-8424. PMC   2491484 . PMID   18667696.
  15. An, Kwang-Guk; Kim, Dong-Su (2003-10-01). "Response of Reservoir Water Quality to Nutrient Inputs from Streams and In-Lake Fishfarms". Water, Air, and Soil Pollution. 149 (1): 27–49. doi:10.1023/A:1025602213674. ISSN   1573-2932. S2CID   101079728.
  16. 1 2 Higgins, Scott N.; Paterson, Michael J.; Hecky, Robert E.; Schindler, David W.; Venkiteswaran, Jason J.; Findlay, David L. (2018-09-01). "Biological Nitrogen Fixation Prevents the Response of a Eutrophic Lake to Reduced Loading of Nitrogen: Evidence from a 46-Year Whole-Lake Experiment". Ecosystems. 21 (6): 1088–1100. doi:10.1007/s10021-017-0204-2. ISSN   1435-0629. S2CID   254079555.
  17. Ryther, John H.; Dunstan, William M. (1971-03-12). "Nitrogen, Phosphorus, and Eutrophication in the Coastal Marine Environment". Science. 171 (3975): 1008–1013. doi:10.1126/science.171.3975.1008. ISSN   0036-8075. PMID   4993386. S2CID   9715466.
  18. Domingues, Rita B.; Anselmo, Tânia P.; Barbosa, Ana B.; Sommer, Ulrich; Galvão, Helena M. (2011-01-20). "Nutrient limitation of phytoplankton growth in the freshwater tidal zone of a turbid, Mediterranean estuary". Estuarine, Coastal and Shelf Science. 91 (2): 282–297. doi:10.1016/j.ecss.2010.10.033. ISSN   0272-7714.
  19. 1 2 Paerl, Hans W. (2018-10-20). "Why does N-limitation persist in the world's marine waters?". Marine Chemistry. 206: 1–6. doi: 10.1016/j.marchem.2018.09.001 . ISSN   0304-4203. S2CID   105382102.
  20. Hassler, C. S.; Ridgway, K. R.; Bowie, A. R.; Butler, E. C. V.; Clementson, L. A.; Doblin, M. A.; Davies, D. M.; Law, C.; Ralph, P. J.; Merwe, P. van der; Watson, R.; Ellwood, M. J. (2014-05-07). "Primary productivity induced by iron and nitrogen in the Tasman Sea: an overview of the PINTS expedition". Marine and Freshwater Research. 65 (6): 517–537. doi:10.1071/MF13137. ISSN   1448-6059.