Last updated
Marine habitats
Mattole River Estuary 2005.jpg
Estuary of the Mattole River

An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with a free connection to the open sea. [1]

Brackish water Water with salinity between freshwater and seawater

Brackish water is water having more salinity than freshwater, but not as much as seawater. It may result from mixing seawater with fresh water together, as in estuaries, or it may occur in brackish fossil aquifers. The word comes from the Middle Dutch root "brak". Certain human activities can produce brackish water, in particular civil engineering projects such as dikes and the flooding of coastal marshland to produce brackish water pools for freshwater prawn farming. Brackish water is also the primary waste product of the salinity gradient power process. Because brackish water is hostile to the growth of most terrestrial plant species, without appropriate management it is damaging to the environment.


Estuaries form a transition zone between river environments and maritime environments. They are subject both to marine influences—such as tides, waves, and the influx of saline water—and to riverine influences—such as flows of fresh water and sediment. The mixing of seawater and fresh water provide high levels of nutrients both in the water column and in sediment, making estuaries among the most productive natural habitats in the world. [2]

Sediment Particulate solid matter that is deposited on the surface of land

Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand and silt can be carried in suspension in river water and on reaching the sea bed deposited by sedimentation. If buried, they may eventually become sandstone and siltstone through lithification.

Most existing estuaries formed during the Holocene epoch with the flooding of river-eroded or glacially scoured valleys when the sea level began to rise about 10,000–12,000 years ago. [3] Estuaries are typically classified according to their geomorphological features or to water-circulation patterns. They can have many different names, such as bays, harbors, lagoons, inlets, or sounds, although some of these water bodies do not strictly meet the above definition of an estuary and may be fully saline.

Holocene The current geological epoch, covering the last 11,700 years

The Holocene is the current geological epoch. It began approximately 11,650 cal years before present, after the last glacial period, which concluded with the Holocene glacial retreat. The Holocene and the preceding Pleistocene together form the Quaternary period. The Holocene has been identified with the current warm period, known as MIS 1. It is considered by some to be an interglacial period within the Pleistocene Epoch.

Geomorphology The scientific study of landforms and the processes that shape them

Geomorphology is the scientific study of the origin and evolution of topographic and bathymetric features created by physical, chemical or biological processes operating at or near the Earth's surface. Geomorphologists seek to understand why landscapes look the way they do, to understand landform history and dynamics and to predict changes through a combination of field observations, physical experiments and numerical modeling. Geomorphologists work within disciplines such as physical geography, geology, geodesy, engineering geology, archaeology, climatology and geotechnical engineering. This broad base of interests contributes to many research styles and interests within the field.

Bay A recessed, coastal body of water connected to an ocean or lake

A bay is a recessed, coastal body of water that directly connects to a larger main body of water, such as an ocean, a lake, or another bay. A large bay is usually called a gulf, sea, sound, or bight. A cove is a type of smaller bay with a circular inlet and narrow entrance. A fjord is a particularly steep bay shaped by glacial activity.

The banks of many estuaries are amongst the most heavily populated areas of the world, with about 60% of the world's population living along estuaries and the coast.[ citation needed ] As a result, many estuaries suffer degradation from a variety of factors including: sedimentation from soil erosion from deforestation, overgrazing, and other poor farming practices; overfishing; drainage and filling of wetlands; eutrophication due to excessive nutrients from sewage and animal wastes; pollutants including heavy metals, polychlorinated biphenyls, radionuclides and hydrocarbons from sewage inputs; and diking or damming for flood control or water diversion. [3] [4]

Habitat destruction is the process by which natural habitat becomes incapable of supporting its native species. In this process, the organisms that previously used the site are displaced or destroyed reducing biodiversity. Habitat destruction by human activity is mainly for the purpose of harvesting natural resources for industrial production and urbanization. Clearing habitats for agriculture is the principal cause of habitat destruction. Other important causes of habitat destruction include mining, logging, trawling, and urban sprawl. Habitat destruction is currently ranked as the primary cause of species extinction worldwide. It is a process of natural environmental change that may be caused by habitat fragmentation, geological processes, climate change or by human activities such as the introduction of invasive species, ecosystem nutrient depletion, and other human activities.

Soil erosion washing or blowing away of the top layer of soil

Soil erosion is the displacement of the upper layer of soil, it is one form of soil degradation. This natural process is caused by the dynamic activity of erosive agents, that is, water, ice (glaciers), snow, air (wind), plants, animals, and humans. In accordance with these agents, erosion is sometimes divided into water erosion, glacial erosion, snow erosion, wind (aeolean) erosion, zoogenic erosion, and anthropogenic erosion. Soil erosion may be a slow process that continues relatively unnoticed, or it may occur at an alarming rate causing a serious loss of topsoil. The loss of soil from farmland may be reflected in reduced crop production potential, lower surface water quality and damaged drainage networks.


New York-New Jersey Harbor Estuary New York STS058-081-038.jpg
New York–New Jersey Harbor Estuary
River Exe estuary Exe estuary from balloon.jpg
River Exe estuary
Estuary mouth located in Darwin, Northern Territory, Australia Estuary mouth.jpg
Estuary mouth located in Darwin, Northern Territory, Australia
A crowded estuary mouth in Paravur near the city of Kollam, India Thekkumbhagam Estuary, Paravur.jpg
A crowded estuary mouth in Paravur near the city of Kollam, India
Estuary mouth Estuary-mouth.jpg
Estuary mouth
Rio de la Plata estuary Rio de la Plata BA 2.JPG
Río de la Plata estuary
Estuary mouth of the Yachats River in Yachats, Oregon Yachats River estuary mouth.jpg
Estuary mouth of the Yachats River in Yachats, Oregon
Amazon estuary Mouths of amazon geocover 1990.png
Amazon estuary

The word "estuary" is derived from the Latin word aestuarium meaning tidal inlet of the sea, which in itself is derived from the term aestus, meaning tide. There have been many definitions proposed to describe an estuary. The most widely accepted definition is: "a semi-enclosed coastal body of water, which has a free connection with the open sea, and within which sea water is measurably diluted with freshwater derived from land drainage". [1] However, this definition excludes a number of coastal water bodies such as coastal lagoons and brackish seas. A more comprehensive definition of an estuary is "a semi-enclosed body of water connected to the sea as far as the tidal limit or the salt intrusion limit and receiving freshwater runoff; however the freshwater inflow may not be perennial, the connection to the sea may be closed for part of the year and tidal influence may be negligible". [3] This broad definition also includes fjords, lagoons, river mouths, and tidal creeks. An estuary is a dynamic ecosystem having a connection to the open sea through which the sea water enters with the rhythm of the tides. The sea water entering the estuary is diluted by the fresh water flowing from rivers and streams. The pattern of dilution varies between different estuaries and depends on the volume of fresh water, the tidal range, and the extent of evaporation of the water in the estuary. [2]

Fjord A long, narrow inlet with steep sides or cliffs, created by glacial activity

Geologically, a fjord or fiord is a long, narrow inlet with steep sides or cliffs, created by a glacier. There are many fjords on the coasts of Alaska, Antarctica, British Columbia, Chile, Greenland, the Faroe Islands, Iceland, Kamchatka, the Kerguelen Islands, New Zealand, Norway, Novaya Zemlya, Labrador, Nunavut, Newfoundland, Quebec, Scotland, South Georgia Island, and Washington state. Norway's coastline is estimated at 29,000 kilometres (18,000 mi) with nearly 1,200 fjords, but only 2,500 kilometres (1,600 mi) when fjords are excluded.

Lagoon A shallow body of water separated from a larger body of water by barrier islands or reefs

A lagoon is a shallow body of water separated from a larger body of water by barrier islands or reefs. Lagoons are commonly divided into coastal lagoons and atoll lagoons. They have also been identified as occurring on mixed-sand and gravel coastlines. There is an overlap between bodies of water classified as coastal lagoons and bodies of water classified as estuaries. Lagoons are common coastal features around many parts of the world.

River mouth end of a river

A river mouth is the part of a river where the river debouches into another river, a lake, a reservoir, a sea, or an ocean.

Classification based on geomorphology

Drowned river valleys

Drowned river valleys are also known as coastal plain estuaries. In places where the sea level is rising relative to the land, seawater progressively penetrates into river valleys and the topography of the estuary remains similar to that of a river valley. This is the most common type of estuary in temperate climates. Well-studied estuaries include the Severn Estuary in the United Kingdom and the Ems Dollard along the Dutch-German border.

Severn Estuary the estuary of the River Severn, the longest river in Great Britain; mouth of the Severn, Wye, Usk, and the Bristol Avon

The Severn Estuary is the estuary of the River Severn, the longest river in Great Britain. It is the confluence of four major rivers, being the Severn, Wye, Usk and Avon, and other smaller rivers. Its high tidal range, approximately 50 feet (15 m), means that it has been at the centre of discussions in the UK regarding renewable energy.

United Kingdom Country in Europe

The United Kingdom (UK), officially the United Kingdom of Great Britain and Northern Ireland, and sometimes referred to as Britain, is a sovereign country located off the north-western coast of the European mainland. The United Kingdom includes the island of Great Britain, the north-eastern part of the island of Ireland, and many smaller islands. Northern Ireland is the only part of the United Kingdom that shares a land border with another sovereign state, the Republic of Ireland. Apart from this land border, the United Kingdom is surrounded by the Atlantic Ocean, with the North Sea to the east, the English Channel to the south and the Celtic Sea to the south-west, giving it the 12th-longest coastline in the world. The Irish Sea lies between Great Britain and Ireland. With an area of 242,500 square kilometres (93,600 sq mi), the United Kingdom is the 78th-largest sovereign state in the world. It is also the 22nd-most populous country, with an estimated 66.0 million inhabitants in 2017.

Ems Dollart Region

The Ems Dollart Region (EDR), established in 1977, is a cross-border organisation located in the northern Dutch-German border area. The region is named after the Ems River and the Dollart estuary. Its aim is to establish and improve contacts and levels of interaction between people, companies and organisations within the border region. The organization is based in the Dutch village of Bad Nieuweschans. Here, the office has developed into a Dutch-German center, where cross-border functions and other activities take place. The office also serves as an administration base and launching point for many cross-border projects.

The width-to-depth ratio of these estuaries is typically large, appearing wedge-shaped (in cross-section) in the inner part and broadening and deepening seaward. Water depths rarely exceed 30 m (100 ft). Examples of this type of estuary in the U.S. are the Hudson River, Chesapeake Bay, and Delaware Bay along the Mid-Atlantic coast, and Galveston Bay and Tampa Bay along the Gulf Coast. [5]

Lagoon-type or bar-built

Bar-built estuaries are found in place where the deposition of sediment has kept pace with rising sea level so that the estuaries are shallow and separated from the sea by sand spits or barrier islands. They are relatively common in tropical and subtropical locations.

These estuaries are semi-isolated from ocean waters by barrier beaches (barrier islands and barrier spits). Formation of barrier beaches partially encloses the estuary, with only narrow inlets allowing contact with the ocean waters. Bar-built estuaries typically develop on gently sloping plains located along tectonically stable edges of continents and marginal sea coasts. They are extensive along the Atlantic and Gulf coasts of the U.S. in areas with active coastal deposition of sediments and where tidal ranges are less than 4 m (13 ft). The barrier beaches that enclose bar-built estuaries have been developed in several ways:

Barrier beaches form in shallow water and are generally parallel to the shoreline, resulting in long, narrow estuaries. The average water depth is usually less than 5 m (16 ft), and rarely exceeds 10 m (33 ft). Examples of bar-built estuaries are Barnegat Bay, New Jersey; Laguna Madre, Texas; and Pamlico Sound, North Carolina.[ citation needed ]


Fjords were formed where pleistocene glaciers deepened and widened existing river valleys so that they become U-shaped in cross-sections. At their mouths there are typically rocks, bars or sills of glacial deposits, which have the effects of modifying the estuarine circulation.

Fjord-type estuaries are formed in deeply eroded valleys formed by glaciers. These U-shaped estuaries typically have steep sides, rock bottoms, and underwater sills contoured by glacial movement. The estuary is shallowest at its mouth, where terminal glacial moraines or rock bars form sills that restrict water flow. In the upper reaches of the estuary, the depth can exceed 300 m (1,000 ft). The width-to-depth ratio is generally small. In estuaries with very shallow sills, tidal oscillations only affect the water down to the depth of the sill, and the waters deeper than that may remain stagnant for a very long time, so there is only an occasional exchange of the deep water of the estuary with the ocean. If the sill depth is deep, water circulation is less restricted, and there is a slow but steady exchange of water between the estuary and the ocean. Fjord-type estuaries can be found along the coasts of Alaska, the Puget Sound region of western Washington state, British Columbia, eastern Canada, Greenland, Iceland, New Zealand, and Norway.

Tectonically produced

These estuaries are formed by subsidence or land cut off from the ocean by land movement associated with faulting, volcanoes, and landslides. Inundation from eustatic sea level rise during the Holocene Epoch has also contributed to the formation of these estuaries. There are only a small number of tectonically produced estuaries; one example is the San Francisco Bay, which was formed by the crustal movements of the San Andreas fault system causing the inundation of the lower reaches of the Sacramento and San Joaquin rivers. [6]

Classification based on water circulation

Salt wedge

In this type of estuary, river output greatly exceeds marine input and tidal effects have a minor importance. Freshwater floats on top of the seawater in a layer that gradually thins as it moves seaward. The denser seawater moves landward along the bottom of the estuary, forming a wedge-shaped layer that is thinner as it approaches land. As a velocity difference develops between the two layers, shear forces generate internal waves at the interface, mixing the seawater upward with the freshwater. An example of a salt wedge estuary is the Mississippi River. [6]

Partially mixed

As tidal forcing increases, river output becomes less than the marine input. Here, current induced turbulence causes mixing of the whole water column such that salinity varies more longitudinally rather than vertically, leading to a moderately stratified condition. Examples include the Chesapeake Bay and Narragansett Bay. [6]


Tidal mixing forces exceed river output, resulting in a well-mixed water column and the disappearance of the vertical salinity gradient. The freshwater-seawater boundary is eliminated due to the intense turbulent mixing and eddy effects. The lower reaches of Delaware Bay and the Raritan River in New Jersey are examples of vertically homogenous estuaries. [6]


Inverse estuaries occur in dry climates where evaporation greatly exceeds the inflow of fresh water. A salinity maximum zone is formed, and both riverine and oceanic water flow close to the surface towards this zone. [7] This water is pushed downward and spreads along the bottom in both the seaward and landward direction. [3] An example of an inverse estuary is Spencer Gulf, South Australia. [8]


Estuary type varies dramatically depending on freshwater input, and is capable of changing from a wholly marine embayment to any of the other estuary types. [9] [10]

Physiochemical variation

The most important variable characteristics of estuary water are the concentration of dissolved oxygen, salinity and sediment load. There is extreme spatial variability in salinity, with a range of near zero at the tidal limit of tributary rivers to 3.4% at the estuary mouth. At any one point the salinity will vary considerably over time and seasons, making it a harsh environment for organisms. Sediment often settles in intertidal mudflats which are extremely difficult to colonize. No points of attachment exist for algae, so vegetation based habitat is not established.[ clarification needed ] Sediment can also clog feeding and respiratory structures of species, and special adaptations exist within mudflat species to cope with this problem. Lastly, dissolved oxygen variation can cause problems for life forms. Nutrient-rich sediment from man-made sources can promote primary production life cycles, perhaps leading to eventual decay removing the dissolved oxygen from the water; thus hypoxic or anoxic zones can develop. [11]

Implications for marine life

Estuaries are incredibly dynamic systems, where temperature, salinity, turbidity, depth and flow all change daily in response to the tides. This dynamism makes estuaries highly productive habitats, but also make it difficult for many species to survive year-round. As a result, estuaries large and small experience strong seasonal variation in their fish communities. [12] In winter, the fish community is dominated by hardy marine residents, and in summer a variety of marine and anadromous fishes move into and out of estuaries, capitalizing on their high productivity [13] . Estuaries provide critical habitat to a variety of species that rely on estuaries for life-cycle completion. Pacific Herring (Clupea pallasii) are known to lay their eggs in estuaries and bays, surfperch give birth in estuaries, juvenile flatfish and rockfish migrate to estuaries to rear, and anadromous salmonids and lampreys use estuaries as migration corridors. [14] Also, migratory bird populations, such as the black-tailed godwit, [15] rely on estuaries.

Two of the main challenges of estuarine life are the variability in salinity and sedimentation. Many species of fish and invertebrates have various methods to control or conform to the shifts in salt concentrations and are termed osmoconformers and osmoregulators. Many animals also burrow to avoid predation and to live in the more stable sedimental environment. However, large numbers of bacteria are found within the sediment which have a very high oxygen demand. This reduces the levels of oxygen within the sediment often resulting in partially anoxic conditions, which can be further exacerbated by limited water flux.

Phytoplankton are key primary producers in estuaries. They move with the water bodies and can be flushed in and out with the tides. Their productivity is largely dependent upon the turbidity of the water. The main phytoplankton present are diatoms and dinoflagellates which are abundant in the sediment.

It is important to remember that a primary source of food for many organisms on estuaries, including bacteria, is detritus from the settlement of the sedimentation.

Human impact

Of the thirty-two largest cities in the world in the early 1990s, twenty-two were located on estuaries. [16]

As ecosystems, estuaries are under threat from human activities such as pollution and overfishing. They are also threatened by sewage, coastal settlement, land clearance and much more. Estuaries are affected by events far upstream, and concentrate materials such as pollutants and sediments. [17] Land run-off and industrial, agricultural, and domestic waste enter rivers and are discharged into estuaries. Contaminants can be introduced which do not disintegrate rapidly in the marine environment, such as plastics, pesticides, furans, dioxins, phenols and heavy metals.

Such toxins can accumulate in the tissues of many species of aquatic life in a process called bioaccumulation. They also accumulate in benthic environments, such as estuaries and bay muds: a geological record of human activities of the last century. The elemental composition of biofilm reflect areas of the estuary impacted by human activities, and over time may shift the basic composition of the ecosystem, and the reversible or irreversible changes in the abiotic and biotic parts of the systems from the bottom up. [18]

For example, Chinese and Russian industrial pollution, such as phenols and heavy metals, has devastated fish stocks in the Amur River and damaged its estuary soil. [19]

Estuaries tend to be naturally eutrophic because land runoff discharges nutrients into estuaries. With human activities, land run-off also now includes the many chemicals used as fertilizers in agriculture as well as waste from livestock and humans. Excess oxygen-depleting chemicals in the water can lead to hypoxia and the creation of dead zones. [20] This can result in reductions in water quality, fish, and other animal populations. Overfishing also occurs. Chesapeake Bay once had a flourishing oyster population that has been almost wiped out by overfishing. Oysters filter these pollutants, and either eat them or shape them into small packets that are deposited on the bottom where they are harmless. Historically the oysters filtered the estuary's entire water volume of excess nutrients every three or four days. Today that process takes almost a year, [21] and sediment, nutrients, and algae can cause problems in local waters.





North America


South America

See also

Related Research Articles

Marsh A wetland that is dominated by herbaceous rather than woody plant species

A marsh is a wetland that is dominated by herbaceous rather than woody plant species. Marshes can often be found at the edges of lakes and streams, where they form a transition between the aquatic and terrestrial ecosystems. They are often dominated by grasses, rushes or reeds. If woody plants are present they tend to be low-growing shrubs. This form of vegetation is what differentiates marshes from other types of wetland such as swamps, which are dominated by trees, and mires, which are wetlands that have accumulated deposits of acidic peat.

Salt marsh A coastal ecosystem in the upper coastal intertidal zone between land and open saltwater or brackish water that is regularly flooded by the tides

A salt marsh or saltmarsh, also known as a coastal salt marsh or a tidal marsh, is a coastal ecosystem in the upper coastal intertidal zone between land and open saltwater or brackish water that is regularly flooded by the tides. It is dominated by dense stands of salt-tolerant plants such as herbs, grasses, or low shrubs. These plants are terrestrial in origin and are essential to the stability of the salt marsh in trapping and binding sediments. Salt marshes play a large role in the aquatic food web and the delivery of nutrients to coastal waters. They also support terrestrial animals and provide coastal protection.

Barrier island A coastal dune landform that forms by wave and tidal action parallel to the mainland coast

Barrier islands are coastal landforms and a type of dune system that are exceptionally flat or lumpy areas of sand that form by wave and tidal action parallel to the mainland coast. They usually occur in chains, consisting of anything from a few islands to more than a dozen. They are subject to change during storms and other action, but absorb energy and protect the coastlines and create areas of protected waters where wetlands may flourish. A barrier chain may extend uninterrupted for over a hundred kilometers, excepting the tidal inlets that separate the islands, the longest and widest being Padre Island of Texas. The length and width of barriers and overall morphology of barrier coasts are related to parameters including tidal range, wave energy, sediment supply, sea-level trends, and basement controls. The amount of vegetation on the barrier has a large impact on the height and evolution of the island.

Lake Illawarra lake in New South Wales, Australia

Lake Illawarra, an open and trained intermediate wave dominated barrier estuary or large coastal lagoon, is located in the Illawarra region of New South Wales, situated about 100 kilometres (62 mi) south of Sydney, Australia.

Tidal marsh Marsh subject to tidal change in water

A tidal marsh is a marsh found along rivers, coasts and estuaries which floods and drains by the tidal movement of the adjacent estuary, sea or ocean. Tidal marshes experience many overlapping persistent cycles, including diurnal and semi-diurnal tides, day-night temperature fluctuations, spring-neap tides, seasonal vegetation growth and decay, upland runoff, decadal climate variations, and centennial to millennial trends in sea level and climate. They are also impacted by transient disturbances such as hurricanes, floods, storms, and upland fires.

Aquatic ecosystem An ecosystem in a body of water

An aquatic ecosystem is an ecosystem in a body of water. Communities of organisms that are dependent on each other and on their environment live in aquatic ecosystems. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems.

Lake Borgne lagoon in Louisiana, United States of America

Lake Borgne is a lagoon of the Gulf of Mexico in southeastern Louisiana. Although early maps show it as a lake surrounded by land, coastal erosion has made it an arm of the Gulf of Mexico. Its name comes from the French word borgne, which means "one-eyed."

Yaquina Bay small bay partially within Newport, Oregon, United States

Yaquina Bay is a coastal estuarine community found in Newport, Oregon, United States. Yaquina Bay is a semi-enclosed body of water, approximately 8 km² (3.2 mi²) in area, with free connection to the Pacific Ocean, but also diluted with freshwater from the Yaquina River land drainage. The Bay is traversed by the Yaquina Bay Bridge. There are three small communities that border the Yaquina River and Bay; Newport, Toledo and Elk City. The Yaquina Bay in Newport is a popular tourist destination along the Pacific Coast Highway. It is also an important estuary for the ecology and economy of the area.

Marine ecosystem Any ecosystems in the marine environment

Marine ecosystems are the largest of Earth's aquatic ecosystems and are distinguished by waters that have a high salt content. These systems contrast with freshwater ecosystems, which have a lower salt content. Marine waters cover more than 70% of the surface of the Earth and account for more than 97% of Earth's water supply and 90% of habitable space on Earth. Marine ecosystems include nearshore systems, such as the salt marshes, mudflats, seagrass meadows, mangroves, rocky intertidal systems and coral reefs. They also extend outwards from the coast to include offshore systems, such as the surface ocean, pelagic ocean waters, the deep sea, oceanic hydrothermal vents, and the sea floor. Marine ecosystems are characterized by the biological community of organisms that they are associated with and their physical environment.

Pacific ladyfish species of fish

The Pacific ladyfish, also known as the Pacific tenpounder and Machete, is a species of fish in the genus Elops, the only genus in the monotypic family Elopidae. The Pacific ladyfish can be found throughout the southwest U.S. and other areas in the Pacific Ocean.

Submarine Groundwater Discharge (SGD) is a hydrological process which commonly occurs in coastal areas. It is described as submarine inflow of fresh-, and brackish groundwater from land into the sea. Submarine Groundwater Discharge is controlled by several forcing mechanisms, which cause a hydraulic gradient between land and sea. Considering the different regional settings the discharge occurs either as (1) a focused flow along fractures in karst and rocky areas, (2) a dispersed flow in soft sediments, or (3) a recirculation of seawater within marine sediments. Submarine Groundwater Discharge plays an important role in coastal biogeochemical processes and hydrological cycles such as the formation of offshore plankton blooms, hydrological cycles, and the release of nutrients, trace elements and gases.

Estuarine water circulation is controlled by the inflow of rivers, the tides, rainfall and evaporation, the wind, and other oceanic events such as an upwelling, an eddy, and storms. Estuarine water circulation patterns are influenced by vertical mixing and stratification, and can affect residence time and exposure time.

Marine habitats A habitat that supports marine life

Marine habitats are habitats that support marine life. Marine life depends in some way on the saltwater that is in the sea. A habitat is an ecological or environmental area inhabited by one or more living species. The marine environment supports many kinds of these habitats.

Tidal barrage

A tidal barrage is a dam-like structure used to capture the energy from masses of water moving in and out of a bay or river due to tidal forces.

Environmental flows can be broken down into instream flow, freshwater inflow, and outflow, as shown in the depiction below. Instream flow is the freshwater water flowing in rivers or streams. Freshwater inflow is the freshwater that flows into an estuary. Outflow is the flow from an estuary to the ocean. This article's focus is upon freshwater inflow.

Estuarine acidification happens when the pH balance of water in coastal marine ecosystems, specifically those of estuaries, decreases. Water, generally considered neutral on the pH scale, normally perfectly balanced between alkalinity and acidity.While ocean acidification occurs due to the ongoing decrease in the pH of the Earth's oceans, caused by the absorption of carbon dioxide (CO2) from the atmosphere, pH change in estuaries is more complicated than in the open ocean due to direct impacts from land run-off, human impact, and coastal current dynamics. In the ocean, wave and wind movement allows carbon dioxide (CO2) to mixes with water (H2O) forming carbonic acid (H2CO3). Through wave motion this chemical bond is mixed up, allowing for the further break of the bond, eventually becoming carbonate (CO3) which is basic and helps form shells for ocean creatures, and two hydron molecules. This creates the potential for acidic threat since hydron ions readily bond with any Lewis Structure to form an acidic bond. This is referred to as an oxidation-reduction reaction.

East Harbor

East Harbor is a tidal estuary in Truro, Massachusetts that was originally a harbor until it was cut off from Cape Cod Bay to form a salt marsh lagoon, later renamed Pilgrim Lake. It is now within the Cape Cod National Seashore.

Estuaries of Australia are features of the Australian coastline. They are linked to tides, river mouths and coastal features and conditions. In many cases the features of estuaries are also named inlets.


  1. 1 2 Pritchard, D. W. (1967). "What is an estuary: physical viewpoint". In Lauf, G. H. (ed.). Estuaries. A.A.A.S. Publ. 83. Washington, DC. pp. 3–5. hdl:1969.3/24383.
  2. 1 2 McLusky, D. S.; Elliott, M. (2004). The Estuarine Ecosystem: Ecology, Threats and Management. New York: Oxford University Press. ISBN   978-0-19-852508-0.
  3. 1 2 3 4 Wolanski, E. (2007). Estuarine Ecohydrology. Amsterdam: Elsevier. ISBN   978-0-444-53066-0.
  4. Silva, Sergio; Lowry, Maran; Macaya-Solis, Consuelo; Byatt, Barry; Lucas, Martyn C. (2017). "Can navigation locks be used to help migratory fishes with poor swimming performance pass tidal barrages? A test with lampreys". Ecological Engineering. 102: 291–302. doi:10.1016/j.ecoleng.2017.02.027.
  5. Kunneke, J. T.; Palik, T. F. (1984). "Tampa Bay environmental atlas" (PDF). U.S. Fish Wildl. Serv. Biol. Rep. 85 (15): 3. Retrieved January 12, 2010.
  6. 1 2 3 4 Kennish, M. J. (1986). Ecology of Estuaries. Volume I: Physical and Chemical Aspects. Boca Raton, FL: CRC Press. ISBN   978-0-8493-5892-0.
  7. Wolanski, E. (1986). "An evaporation-driven salinity maximum zone in Australian tropical estuaries". Estuarine, Coastal and Shelf Science. 22 (4): 415–424. Bibcode:1986ECSS...22..415W. doi:10.1016/0272-7714(86)90065-X.
  8. 1 2 Gostin, V. & Hall, S.M. (2014): Spencer Gulf: Geological setting and evolution. In:Natural History of Spencer Gulf. Royal Society of South Australia Inc. p. 21. ISBN   9780959662764
  9. Tomczak, M. (2000). "Oceanography Notes Ch. 12: Estuaries" . Retrieved 30 November 2006.
  10. Day, J. H. (1981). Estuarine Ecology. Rotterdam: A. A. Balkema. ISBN   978-90-6191-205-7.
  11. Kaiser; et al. (2005). Marine Ecology. Processes, Systems and Impacts. New York: Oxford University Press. ISBN   978-0199249756.
  12. Osborn, Katherine (December 2017). Seasonal fish and invertebrate communities in three northern California estuaries (M.S. thesis). Humboldt State University.
  13. Allen, Larry G. (1982). "Seasonal abundance, composition and productivity of the littoral fish assemblage in Upper Newport Bay, California" (PDF). Fishery Bulletin. 80 (4): 769–790.
  14. Gillanders, BM; Able, KW; Brown, JA; Eggleston, DB; Sheridan, PF (2003). "Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: An important component of nurseries". Marine Ecology Progress Series. 247: 281–295. Bibcode:2003MEPS..247..281G. doi:10.3354/meps247281. JSTOR   24866466.
  15. Gill, Jennifer A.; Norris, Ken; Potts, Peter M.; Gunnarsson, Tómas Grétar; Atkinson, Philip W.; Sutherland, William J. (2001). "The buffer effect and large-scale population regulation in migratory birds". Nature. 412 (6845): 436–438. doi:10.1038/35086568. PMID   11473317.
  16. Ross, D. A. (1995). Introduction to Oceanography. New York: Harper Collins College Publishers. ISBN   978-0-673-46938-0.
  17. Branch, George (1999). "Estuarine vulnerability and ecological impacts". Trends in Ecology & Evolution. 14 (12): 499. doi:10.1016/S0169-5347(99)01732-2.
  18. García-Alonso, J.; Lercari, D.; Araujo, B.F.; Almeida, M.G.; Rezende, C.E. (2017). "Total and extractable elemental composition of the intertidal estuarine biofilm of the Río de la Plata: Disentangling natural and anthropogenic influences". Estuarine, Coastal and Shelf Science. 187: 53–61. Bibcode:2017ECSS..187...53G. doi:10.1016/j.ecss.2016.12.018.
  19. "Indigenous Peoples of the Russian North, Siberia and Far East: Nivkh" by Arctic Network for the Support of the Indigenous Peoples of the Russian Arctic
  20. Gerlach, Sebastian A. (1981). Marine Pollution: Diagnosis and Therapy. Berlin: Springer. ISBN   978-0387109404.
  21. "Oyster Reefs: Ecological importance". US National Oceanic and Atmospheric Administration. Archived from the original on October 3, 2008. Retrieved 2008-01-16.
  25. Noman, Md. Abu; Mamunur, Rashid; Islam, M. Shahanul; Hossain, M. Belal (2018). "Spatial and seasonal distribution of Intertidal Macrobenthos with their biomass and functional feeding guilds in the Naf River estuary, Bangladesh". Journal of Oceanology and Limnology: 33. Bibcode:2018JOL...tmp...33N. doi:10.1007/s00343-019-8063-7.
  26. Jakobsen, F.; Azam, M.H.; Mahboob-Ul-Kabir, M. (2002). "Residual Flow in the Meghna Estuary on the Coastline of Bangladesh". Estuarine, Coastal and Shelf Science. 55 (4): 587–597. Bibcode:2002ECSS...55..587J. doi:10.1006/ecss.2001.0929.