Estuary

Last updated
Marine habitats
Mattole River Estuary 2005.jpg
Mattole River estuary

An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with a free connection to the open sea. [1]

Contents

Estuaries form a transition zone between river environments and maritime environments known as ecotone. Estuaries are subject both to marine influences such as tides, waves, and the influx of saline water and to riverine influences such as flows of freshwater and sediment. The mixing of seawater and freshwater provides high levels of nutrients both in the water column and in sediment, making estuaries among the most productive natural habitats in the world. [2]

Most existing estuaries formed during the Holocene epoch with the flooding of river-eroded or glacially scoured valleys when the sea level began to rise about 10,000–12,000 years ago. [3] Estuaries are typically classified according to their geomorphological features or to water-circulation patterns. They can have many different names, such as bays, harbors, lagoons, inlets, or sounds, although some of these water bodies do not strictly meet the above definition of an estuary and could be fully saline.

Many estuaries suffer degeneration from a variety of factors including soil erosion, deforestation, overgrazing, overfishing and the filling of wetlands. Eutrophication may lead to excessive nutrients from sewage and animal wastes; pollutants including heavy metals, polychlorinated biphenyls, radionuclides and hydrocarbons from sewage inputs; and diking or damming for flood control or water diversion. [3] [4]

Definition

New York-New Jersey Harbor Estuary New York STS058-081-038.jpg
New York–New Jersey Harbor Estuary
River Exe estuary Exe estuary from balloon.jpg
River Exe estuary
Estuary mouth located in Darwin, Northern Territory, Australia Estuary mouth.jpg
Estuary mouth located in Darwin, Northern Territory, Australia
A crowded estuary mouth in Paravur near the city of Kollam, India Thekkumbhagam Estuary, Paravur.jpg
A crowded estuary mouth in Paravur near the city of Kollam, India
Estuary mouth Estuary-mouth.jpg
Estuary mouth
Rio de la Plata estuary Rio de la Plata BA 2.JPG
Río de la Plata estuary
Estuary mouth of the Yachats River in Yachats, Oregon Yachats River estuary mouth.jpg
Estuary mouth of the Yachats River in Yachats, Oregon
Amazon estuary Mouths of amazon geocover 1990.png
Amazon estuary

The word "estuary" is derived from the Latin word aestuarium meaning tidal inlet of the sea, which in itself is derived from the term aestus, meaning tide. There have been many definitions proposed to describe an estuary. The most widely accepted definition is: "a semi-enclosed coastal body of water, which has a free connection with the open sea, and within which seawater is measurably diluted with freshwater derived from land drainage". [1] However, this definition excludes a number of coastal water bodies such as coastal lagoons and brackish seas. A more comprehensive definition of an estuary is "a semi-enclosed body of water connected to the sea as far as the tidal limit or the salt intrusion limit and receiving freshwater runoff; however the freshwater inflow may not be perennial, the connection to the sea may be closed for part of the year and tidal influence may be negligible". [3] This broad definition also includes fjords, lagoons, river mouths, and tidal creeks. An estuary is a dynamic ecosystem having a connection to the open sea through which the sea water enters with the rhythm of the tides. The seawater entering the estuary is diluted by the fresh water flowing from rivers and streams. The pattern of dilution varies between different estuaries and depends on the volume of freshwater, the tidal range, and the extent of evaporation of the water in the estuary. [2]

Classification based on geomorphology

Drowned river valleys

Drowned river valleys are also known as coastal plain estuaries. In places where the sea level is rising relative to the land, sea water progressively penetrates into river valleys and the topography of the estuary remains similar to that of a river valley. This is the most common type of estuary in temperate climates. Well-studied estuaries include the Severn Estuary in the United Kingdom and the Ems Dollard along the Dutch-German border.

The width-to-depth ratio of these estuaries is typically large, appearing wedge-shaped (in cross-section) in the inner part and broadening and deepening seaward. Water depths rarely exceed 30 m (100 ft). Examples of this type of estuary in the U.S. are the Hudson River, Chesapeake Bay, and Delaware Bay along the Mid-Atlantic coast, and Galveston Bay and Tampa Bay along the Gulf Coast. [5]

Lagoon-type or bar-built

Bar-built estuaries are found in a place where the deposition of sediment has kept pace with rising sea levels so that the estuaries are shallow and separated from the sea by sand spits or barrier islands. They are relatively common in tropical and subtropical locations.

These estuaries are semi-isolated from ocean waters by barrier beaches (barrier islands and barrier spits). Formation of barrier beaches partially encloses the estuary, with only narrow inlets allowing contact with the ocean waters. Bar-built estuaries typically develop on gently sloping plains located along tectonically stable edges of continents and marginal sea coasts. They are extensive along the Atlantic and Gulf coasts of the U.S. in areas with active coastal deposition of sediments and where tidal ranges are less than 4 m (13 ft). The barrier beaches that enclose bar-built estuaries have been developed in several ways:

Fjord-type

Fjords were formed where Pleistocene glaciers deepened and widened existing river valleys so that they become U-shaped in cross-sections. At their mouths there are typically rocks, bars or sills of glacial deposits, which have the effects of modifying the estuarine circulation.

Fjord-type estuaries are formed in deeply eroded valleys formed by glaciers. These U-shaped estuaries typically have steep sides, rock bottoms, and underwater sills contoured by glacial movement. The estuary is shallowest at its mouth, where terminal glacial moraines or rock bars form sills that restrict water flow. In the upper reaches of the estuary, the depth can exceed 300 m (1,000 ft). The width-to-depth ratio is generally small. In estuaries with very shallow sills, tidal oscillations only affect the water down to the depth of the sill, and the waters deeper than that may remain stagnant for a very long time, so there is only an occasional exchange of the deep water of the estuary with the ocean. If the sill depth is deep, water circulation is less restricted, and there is a slow but steady exchange of water between the estuary and the ocean. Fjord-type estuaries can be found along the coasts of Alaska, the Puget Sound region of western Washington state, British Columbia, eastern Canada, Greenland, Iceland, New Zealand, and Norway.

Tectonically produced

These estuaries are formed by subsidence or land cut off from the ocean by land movement associated with faulting, volcanoes, and landslides. Inundation from eustatic sea-level rise during the Holocene Epoch has also contributed to the formation of these estuaries. There are only a small number of tectonically produced estuaries; one example is the San Francisco Bay, which was formed by the crustal movements of the San Andreas fault system causing the inundation of the lower reaches of the Sacramento and San Joaquin rivers. [6]

Classification based on water circulation

Salt wedge

In this type of estuary, river output greatly exceeds marine input and tidal effects have minor importance. Freshwater floats on top of the seawater in a layer that gradually thins as it moves seaward. The denser seawater moves landward along the bottom of the estuary, forming a wedge-shaped layer that is thinner as it approaches land. As a velocity difference develops between the two layers, shear forces generate internal waves at the interface, mixing the seawater upward with the freshwater. An example of a salt wedge estuary is the Mississippi River. [6]

Partially mixed

As tidal forcing increases, river output becomes less than the marine input. Here, current induced turbulence causes mixing of the whole water column such that salinity varies more longitudinally rather than vertically, leading to a moderately stratified condition. Examples include the Chesapeake Bay and Narragansett Bay. [6]

Well-mixed

Tidal mixing forces exceed river output, resulting in a well-mixed water column and the disappearance of the vertical salinity gradient. The freshwater-seawater boundary is eliminated due to the intense turbulent mixing and eddy effects. The lower reaches of Delaware Bay and the Raritan River in New Jersey are examples of vertically homogenous estuaries. [6]

Inverse

Inverse estuaries occur in dry climates where evaporation greatly exceeds the inflow of freshwater. A salinity maximum zone is formed, and both riverine and oceanic water flow close to the surface towards this zone. [7] This water is pushed downward and spreads along the bottom in both the seaward and landward direction. [3] An example of an inverse estuary is Spencer Gulf, South Australia. [8]

Intermittent

Estuary type varies dramatically depending on freshwater input, and is capable of changing from a wholly marine embayment to any of the other estuary types. [9] [10]

Physiochemical variation

The most important variable characteristics of estuary water are the concentration of dissolved oxygen, salinity and sediment load. There is extreme spatial variability in salinity, with a range of near-zero at the tidal limit of tributary rivers to 3.4% at the estuary mouth. At any one point, the salinity will vary considerably over time and seasons, making it a harsh environment for organisms. Sediment often settles in intertidal mudflats which are extremely difficult to colonize. No points of attachment exist for algae, so vegetation based habitat is not established.[ clarification needed ] Sediment can also clog feeding and respiratory structures of species, and special adaptations exist within mudflat species to cope with this problem. Lastly, dissolved oxygen variation can cause problems for life forms. Nutrient-rich sediment from man-made sources can promote primary production life cycles, perhaps leading to eventual decay removing the dissolved oxygen from the water; thus hypoxic or anoxic zones can develop. [11]

Implications for marine life

Estuaries are incredibly dynamic systems, where temperature, salinity, turbidity, depth and flow all change daily in response to the tides. This dynamism makes estuaries highly productive habitats, but also make it difficult for many species to survive year-round. As a result, estuaries large and small experience strong seasonal variation in their fish communities. [12] In winter, the fish community is dominated by hardy marine residents, and in summer a variety of marine and anadromous fishes move into and out of estuaries, capitalizing on their high productivity. [13] Estuaries provide critical habitat to a variety of species that rely on estuaries for life-cycle completion. Pacific Herring (Clupea pallasii) are known to lay their eggs in estuaries and bays, surfperch give birth in estuaries, juvenile flatfish and rockfish migrate to estuaries to rear, and anadromous salmonids and lampreys use estuaries as migration corridors. [14] Also, migratory bird populations, such as the black-tailed godwit, [15] rely on estuaries.

Two of the main challenges of estuarine life are the variability in salinity and sedimentation. Many species of fish and invertebrates have various methods to control or conform to the shifts in salt concentrations and are termed osmoconformers and osmoregulators. Many animals also burrow to avoid predation and to live in a more stable sedimental environment. However, large numbers of bacteria are found within the sediment which has a very high oxygen demand. This reduces the levels of oxygen within the sediment often resulting in partially anoxic conditions, which can be further exacerbated by limited water flux.

Phytoplankton are key primary producers in estuaries. They move with the water bodies and can be flushed in and out with the tides. Their productivity is largely dependent upon the turbidity of the water. The main phytoplankton present is diatoms and dinoflagellates which are abundant in the sediment.

It is important to remember that a primary source of food for many organisms on estuaries, including bacteria, is detritus from the settlement of the sedimentation.

Human impact

Of the thirty-two largest cities in the world in the early 1990s, twenty-two were located on estuaries. [16]

As ecosystems, estuaries are under threat from human activities such as pollution and overfishing. They are also threatened by sewage, coastal settlement, land clearance and much more. Estuaries are affected by events far upstream, and concentrate materials such as pollutants and sediments. [17] Land run-off and industrial, agricultural, and domestic waste enter rivers and are discharged into estuaries. Contaminants can be introduced which do not disintegrate rapidly in the marine environment, such as plastics, pesticides, furans, dioxins, phenols and heavy metals.

Such toxins can accumulate in the tissues of many species of aquatic life in a process called bioaccumulation. They also accumulate in benthic environments, such as estuaries and bay muds: a geological record of human activities of the last century. The elemental composition of biofilm reflect areas of the estuary impacted by human activities, and over time may shift the basic composition of the ecosystem, and the reversible or irreversible changes in the abiotic and biotic parts of the systems from the bottom up. [18]

For example, Chinese and Russian industrial pollution, such as phenols and heavy metals, has devastated fish stocks in the Amur River and damaged its estuary soil. [19]

Estuaries tend to be naturally eutrophic because land runoff discharges nutrients into estuaries. With human activities, land run-off also now includes the many chemicals used as fertilizers in agriculture as well as waste from livestock and humans. Excess oxygen-depleting chemicals in the water can lead to hypoxia and the creation of dead zones. [20] This can result in reductions in water quality, fish, and other animal populations. Overfishing also occurs. Chesapeake Bay once had a flourishing oyster population that has been almost wiped out by overfishing. Oysters filter these pollutants, and either eat them or shape them into small packets that are deposited on the bottom where they are harmless. Historically the oysters filtered the estuary's entire water volume of excess nutrients every three or four days. Today that process takes almost a year, [21] and sediment, nutrients, and algae can cause problems in local waters.

Examples

Africa

Asia

Europe

North America

Oceania

South America

See also

Related Research Articles

Brackish water Water with salinity between freshwater and seawater

Brackish water is water having more salinity than freshwater, but not as much as seawater. It may result from mixing seawater with fresh water together, as in estuaries, or it may occur in brackish fossil aquifers. The word comes from the Middle Dutch root "brak". Certain human activities can produce brackish water, in particular civil engineering projects such as dikes and the flooding of coastal marshland to produce brackish water pools for freshwater prawn farming. Brackish water is also the primary waste product of the salinity gradient power process. Because brackish water is hostile to the growth of most terrestrial plant species, without appropriate management it is damaging to the environment.

Lagoon A shallow body of water separated from a larger body of water by barrier islands or reefs

A lagoon is a shallow body of water separated from a larger body of water by barrier islands or reefs. Lagoons are commonly divided into coastal lagoons and atoll lagoons. They have also been identified as occurring on mixed-sand and gravel coastlines. There is an overlap between bodies of water classified as coastal lagoons and bodies of water classified as estuaries. Lagoons are common coastal features around many parts of the world.

River delta Silt deposition landform at the mouth of a river

A river delta is a landform created by deposition of sediment that is carried by a river as the flow leaves its mouth and enters slower-moving or stagnant water. This occurs where a river enters an ocean, sea, estuary, lake, reservoir, or another river that cannot carry away the supplied sediment. The size and shape of a delta is controlled by the balance between watershed processes that supply sediment, and receiving basin processes that redistribute, sequester, and export that sediment. The size, geometry, and location of the receiving basin also plays an important role in delta evolution. River deltas are important in human civilization, as they are major agricultural production centers and population centers. They can provide coastline defense and can impact drinking water supply. They are also ecologically important, with different species' assemblages depending on their landscape position.

Salt marsh Coastal ecosystem between land and open saltwater that is regularly flooded

A salt marsh or saltmarsh, also known as a coastal salt marsh or a tidal marsh, is a coastal ecosystem in the upper coastal intertidal zone between land and open saltwater or brackish water that is regularly flooded by the tides. It is dominated by dense stands of salt-tolerant plants such as herbs, grasses, or low shrubs. These plants are terrestrial in origin and are essential to the stability of the salt marsh in trapping and binding sediments. Salt marshes play a large role in the aquatic food web and the delivery of nutrients to coastal waters. They also support terrestrial animals and provide coastal protection.

Narragansett Bay Bay in the state of Rhode Island

Narragansett Bay is a bay and estuary on the north side of Rhode Island Sound covering 147 mi2 (380 km2), 120.5 mi2 (312 km2) of which is in Rhode Island. The Bay forms New England's largest estuary, which functions as an expansive natural harbor and includes a small archipelago. Small parts of it extend into Massachusetts.

Tidal creek The portion of a stream that is affected by ebb and flow of ocean tides

A tidal creek, tidal channel, or estuary is the portion of a stream that is affected by ebb and flow of ocean tides, in the case that the subject stream discharges to an ocean, sea or strait. Thus this portion of the stream has variable salinity and electrical conductivity over the tidal cycle, and flushes salts from inland soils. Tidal creeks are characterized by slow water velocity resulting in buildup of fine, organic sediment in wetlands. Creeks may often dry to a muddy channel with little or no flow at low tide, but with significant depth of water at high tide. Due to the temporal variability of water quality parameters within the tidally influenced zone, there are unique biota associated with tidal creeks which are often specialised to such zones. Nutrients and organic matter are delivered downstream to habitats normally lacking these, while the creeks also provide access to inland habitat for salt-water organisms.

Tidal marsh Marsh subject to tidal change in water

A tidal marsh is a marsh found along rivers, coasts and estuaries which floods and drains by the tidal movement of the adjacent estuary, sea or ocean. Tidal marshes experience many overlapping persistent cycles, including diurnal and semi-diurnal tides, day-night temperature fluctuations, spring-neap tides, seasonal vegetation growth and decay, upland runoff, decadal climate variations, and centennial to millennial trends in sea level and climate. They are also impacted by transient disturbances such as hurricanes, floods, storms, and upland fires.

Aquatic ecosystem ecosystem in a body of water

An aquatic ecosystem is an ecosystem in a body of water. Communities of organisms that are dependent on each other and on their environment live in aquatic ecosystems. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems.

Yaquina Bay small bay partially within Newport, Oregon, United States

Yaquina Bay is a coastal estuarine community found in Newport, Oregon, United States. Yaquina Bay is a semi-enclosed body of water, approximately 8 km² (3.2 mi²) in area, with free connection to the Pacific Ocean, but also diluted with freshwater from the Yaquina River land drainage. The Bay is traversed by the Yaquina Bay Bridge. There are three small communities that border the Yaquina River and Bay; Newport, Toledo and Elk City. The Yaquina Bay in Newport is a popular tourist destination along the Pacific Coast Highway. It is also an important estuary for the ecology and economy of the area.

A tidal river is a river whose flow and level are influenced by tides. A section of a larger river affected by the tides is a tidal reach, although it may sometimes be considered a tidal river if it has been given a separate name.

Marine ecosystem Ecosystem in saltwater environment

Marine ecosystems are the largest of Earth's aquatic ecosystems and are distinguished by waters that have a high salt content. These systems contrast with freshwater ecosystems, which have a lower salt content. Marine waters cover more than 70% of the surface of the Earth and account for more than 97% of Earth's water supply and 90% of habitable space on Earth. Marine ecosystems include nearshore systems, such as the salt marshes, mudflats, seagrass meadows, mangroves, rocky intertidal systems and coral reefs. They also extend outwards from the coast to include offshore systems, such as the surface ocean, pelagic ocean waters, the deep sea, oceanic hydrothermal vents, and the sea floor. Marine ecosystems are characterized by the biological community of organisms that they are associated with and their physical environment.

Ecology of the San Francisco Estuary

The San Francisco Estuary together with the Sacramento–San Joaquin River Delta represents a highly altered ecosystem. The region has been heavily re-engineered to accommodate the needs of water delivery, shipping, agriculture, and most recently, suburban development. These needs have wrought direct changes in the movement of water and the nature of the landscape, and indirect changes from the introduction of non-native species. New species have altered the architecture of the food web as surely as levees have altered the landscape of islands and channels that form the complex system known as the Delta.

Eprapah Creek is a sub-tropical stream located in Redland City close to Brisbane in South East Queensland, Australia.

Estuarine water circulation is controlled by the inflow of rivers, the tides, rainfall and evaporation, the wind, and other oceanic events such as an upwelling, an eddy, and storms. Estuarine water circulation patterns are influenced by vertical mixing and stratification, and can affect residence time and exposure time.

Marine habitats A habitat that supports marine life

Marine habitats are habitats that support marine life. Marine life depends in some way on the saltwater that is in the sea. A habitat is an ecological or environmental area inhabited by one or more living species. The marine environment supports many kinds of these habitats.

Tidal barrage dam-like structure used to capture the energy from masses of water

A tidal barrage is a dam-like structure used to capture the energy from masses of water moving in and out of a bay or river due to tidal forces.

Environmental flows can be broken down into instream flow, freshwater inflow, and outflow, as shown in the depiction below. Instream flow is the freshwater water flowing in rivers or streams. Freshwater inflow is the freshwater that flows into an estuary. Outflow is the flow from an estuary to the ocean. This article's focus is upon freshwater inflow.

East Harbor

East Harbor is a tidal estuary in Truro, Massachusetts that was originally a harbor until it was cut off from Cape Cod Bay to form a salt marsh lagoon, later renamed Pilgrim Lake. It is now within the Cape Cod National Seashore.

Estuaries of Australia are features of the Australian coastline. They are linked to tides, river mouths and coastal features and conditions. In many cases the features of estuaries are also named inlets.

Hapua

Hapua is the Māori term for river-mouth lagoons on mixed sand and gravel (MSG) beaches which form at the river-coast interface where a typically braided, although sometimes meandering, river interacts with a coastal environment that is significantly affected by longshore drift. The lagoons which form on the MSG coastlines are common on the east coast of the South Island of New Zealand and have long been referred to as hapua by the Māori. This classification differentiates hapua from similar lagoons located on the New Zealand coast termed waituna. Hapua are often located on paraglacial coastal areas where there is a low level of coastal development and minimal population density. Hapua form as the river carves out an elongated coast-parallel area, blocked from the sea by a MSG barrier which constantly alters its shape and volume due to longshore drift. Longshore drift continually extends the barrier behind which the hapua forms by transporting sediment along the coast. Hapua are defined as a narrow shore-parallel extensions of the coastal riverbed. They discharge the majority of stored water to the ocean via an ephemeral and highly mobile drainage channel or outlet. The remainder percolates through the MSG barrier due to its high levels of permeability. Hapua systems are driven by a wide range of dynamic processes that are generally classified as fluvial or marine; changes in the balance between these processes as well as the antecedent barrier conditions can cause shifts in the morphology of the hapua, in particular the barrier. New Zealand examples include the Rakaia, Ashburton and Hurunui river-mouths.

References

  1. 1 2 Pritchard, D. W. (1967). "What is an estuary: physical viewpoint". In Lauf, G. H. (ed.). Estuaries. A.A.A.S. Publ. 83. Washington, DC. pp. 3–5. hdl:1969.3/24383.
  2. 1 2 McLusky, D. S.; Elliott, M. (2004). The Estuarine Ecosystem: Ecology, Threats and Management. New York: Oxford University Press. ISBN   978-0-19-852508-0.
  3. 1 2 3 4 Wolanski, E. (2007). Estuarine Ecohydrology. Amsterdam: Elsevier. ISBN   978-0-444-53066-0.
  4. Silva, Sergio; Lowry, Maran; Macaya-Solis, Consuelo; Byatt, Barry; Lucas, Martyn C. (2017). "Can navigation locks be used to help migratory fishes with poor swimming performance pass tidal barrages? A test with lampreys". Ecological Engineering. 102: 291–302. doi: 10.1016/j.ecoleng.2017.02.027 .
  5. Kunneke, J. T.; Palik, T. F. (1984). "Tampa Bay environmental atlas" (PDF). U.S. Fish Wildl. Serv. Biol. Rep. 85 (15): 3. Retrieved January 12, 2010.
  6. 1 2 3 4 Kennish, M. J. (1986). Ecology of Estuaries. Volume I: Physical and Chemical Aspects. Boca Raton, FL: CRC Press. ISBN   978-0-8493-5892-0.
  7. Wolanski, E. (1986). "An evaporation-driven salinity maximum zone in Australian tropical estuaries". Estuarine, Coastal and Shelf Science. 22 (4): 415–424. Bibcode:1986ECSS...22..415W. doi:10.1016/0272-7714(86)90065-X.
  8. 1 2 Gostin, V. & Hall, S.M. (2014): Spencer Gulf: Geological setting and evolution. In:Natural History of Spencer Gulf. Royal Society of South Australia Inc. p. 21. ISBN   9780959662764
  9. Tomczak, M. (2000). "Oceanography Notes Ch. 12: Estuaries". Archived from the original on 7 December 2006. Retrieved 30 November 2006.
  10. Day, J. H. (1981). Estuarine Ecology. Rotterdam: A. A. Balkema. ISBN   978-90-6191-205-7.
  11. Kaiser; et al. (2005). Marine Ecology. Processes, Systems and Impacts. New York: Oxford University Press. ISBN   978-0199249756.
  12. Osborn, Katherine (December 2017). Seasonal fish and invertebrate communities in three northern California estuaries (M.S. thesis). Humboldt State University.
  13. Allen, Larry G. (1982). "Seasonal abundance, composition and productivity of the littoral fish assemblage in Upper Newport Bay, California" (PDF). Fishery Bulletin. 80 (4): 769–790.
  14. Gillanders, BM; Able, KW; Brown, JA; Eggleston, DB; Sheridan, PF (2003). "Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: An important component of nurseries". Marine Ecology Progress Series. 247: 281–295. Bibcode:2003MEPS..247..281G. doi: 10.3354/meps247281 . JSTOR   24866466.
  15. Gill, Jennifer A.; Norris, Ken; Potts, Peter M.; Gunnarsson, Tómas Grétar; Atkinson, Philip W.; Sutherland, William J. (2001). "The buffer effect and large-scale population regulation in migratory birds". Nature. 412 (6845): 436–438. doi:10.1038/35086568. PMID   11473317.
  16. Ross, D. A. (1995). Introduction to Oceanography. New York: Harper Collins College Publishers. ISBN   978-0-673-46938-0.
  17. Branch, George (1999). "Estuarine vulnerability and ecological impacts". Trends in Ecology & Evolution. 14 (12): 499. doi:10.1016/S0169-5347(99)01732-2.
  18. García-Alonso, J.; Lercari, D.; Araujo, B.F.; Almeida, M.G.; Rezende, C.E. (2017). "Total and extractable elemental composition of the intertidal estuarine biofilm of the Río de la Plata: Disentangling natural and anthropogenic influences". Estuarine, Coastal and Shelf Science. 187: 53–61. Bibcode:2017ECSS..187...53G. doi:10.1016/j.ecss.2016.12.018.
  19. "Indigenous Peoples of the Russian North, Siberia and Far East: Nivkh" by Arctic Network for the Support of the Indigenous Peoples of the Russian Arctic
  20. Gerlach, Sebastian A. (1981). Marine Pollution: Diagnosis and Therapy . Berlin: Springer. ISBN   978-0387109404.
  21. "Oyster Reefs: Ecological importance". US National Oceanic and Atmospheric Administration. Archived from the original on October 3, 2008. Retrieved 2008-01-16.
  22. "สัณฐานชายฝั่ง - ระบบฐานข้อมูลทรัพยากรทางทะเลและชายฝั่ง กรมทรัพยากรทางทะเลและชายฝั่ง". km.dmcr.go.th.
  23. "พื้นที่ชุ่มน้ำในประเทศไทย". wetland.onep.go.th.
  24. "Dawei(Tavoy)". myanmarholiday.com.
  25. Noman, Md. Abu; Mamunur, Rashid; Islam, M. Shahanul; Hossain, M. Belal (2018). "Spatial and seasonal distribution of Intertidal Macrobenthos with their biomass and functional feeding guilds in the Naf River estuary, Bangladesh". Journal of Oceanology and Limnology. 37 (3): 1010–1023. Bibcode:2018JOL...tmp...33N. doi:10.1007/s00343-019-8063-7.
  26. Jakobsen, F.; Azam, M.H.; Mahboob-Ul-Kabir, M. (2002). "Residual Flow in the Meghna Estuary on the Coastline of Bangladesh". Estuarine, Coastal and Shelf Science. 55 (4): 587–597. Bibcode:2002ECSS...55..587J. doi:10.1006/ecss.2001.0929.
  27. "The Amazon River Estuary". etai's web.