Avulsion (river)

Last updated
Plumes of sediment enter the ocean from several mouths of the Mississippi River bird's-foot delta. This sediment is responsible for building the delta and allowing it to advance into the sea. As it extends further offshore, the channel slope will decrease and its bed will aggrade, promoting an avulsion. Mississippi Delta 1976.jpg
Plumes of sediment enter the ocean from several mouths of the Mississippi River bird's-foot delta. This sediment is responsible for building the delta and allowing it to advance into the sea. As it extends further offshore, the channel slope will decrease and its bed will aggrade, promoting an avulsion.

In sedimentary geology and fluvial geomorphology, avulsion is the rapid abandonment of a river channel and the formation of a new river channel. Avulsions occur as a result of channel slopes that are much less steep than the slope that the river could travel if it took a new course. [1]

Contents

Deltaic and net-depositional settings

Avulsions are common in river deltas, where sediment deposits as the river enters the ocean and channel gradients are typically very small. [2] This process is also known as delta switching.

Deposition from the river results in the formation of an individual deltaic lobe that pushes out into the sea. An example of a deltaic lobe is the bird's-foot delta of the Mississippi River, pictured at right with its sediment plumes. As the deltaic lobe advances, the slope of the river channel becomes lower, as the river channel is longer but has the same change in elevation. As the slope of the river channel decreases, it becomes unstable for two reasons. First, water under the force of gravity will tend to flow in the most direct course downslope. If the river could breach its natural levees (i.e., during a flood), it would spill out onto a new course with a shorter route to the ocean, thereby obtaining a more stable steeper slope. [1] Second, as its slope is reduced, the amount of shear stress on the bed will decrease, resulting in deposition of more sediment within the channel and thus raising of the channel bed relative to the floodplain. This will make it easier for the river to breach its levees and cut a new channel that enters the ocean at a steeper slope.

When this avulsion occurs, the new channel carries sediment out to the ocean, building a new deltaic lobe. [3] [4] The abandoned delta eventually subsides. [5]

This process is also related to the distributary network of river channels that can be observed within a river delta. When the channel does this, some of its flow can remain in the abandoned channel. When these channel switching events happen repeatedly over time, a mature delta will gain a distributary network. [6]

Subsidence of the delta and/or sea-level rise can further cause backwater and deposition in the delta. This deposition fills the channels and leaves a geologic record of channel avulsion in sedimentary basins. On average, an avulsion will occur every time the bed of a river channel aggrades enough that the river channel is superelevated above the floodplain by one channel-depth. In this situation, enough hydraulic head is available that any breach of the natural levees will result in an avulsion. [7] [8]

Erosional avulsions

Rivers can also avulse due to the erosion of a new channel that creates a straighter path through the landscape. This can happen during large floods in situations in which the slope of the new channel is significantly greater than that of the old channel. Where the new channel's slope is about the same as the old channel's slope, a partial avulsion will occur in which both channels are occupied by flow. [9] An example of an erosional avulsion is the 2006 avulsion of the Suncook River in New Hampshire, in which heavy rains caused flow levels to rise. The river level backed up behind an old mill dam, which produced a shallowly-sloping pool that overtopped a sand and gravel quarry, connected with a downstream section of channel, and cut a new shorter channel at 25–50 meters per hour. [10] Sediment mobilised by this erosional avulsion produced a depositionally-forced meander cutoff further downstream by superelevating the bed around the meander bend to nearly the level of the floodplain. [11]

Meander cutoffs

An example of a minor avulsion is known as a meander cutoff, where the high-sinuosity meander bend is abandoned in favour of the high-slope (i.e. Large bending meander has river cut through a straighter course, and the meander has water drain away) This occurs when the ratio between the channel slope and the potential slope after an avulsion is less than about 1/5. [1]

Occurrence

Avulsion typically occurs during large floods which carry the power necessary to rapidly change the landscape. Dam removal could also lead to avulsion.

Avulsions usually occur as a downstream to upstream process via head cutting erosion. If a bank of a current stream is breached a new trench will be cut into the existing floodplain. It either cuts through floodplain deposits or reoccupies an old channel. [12]

Avulsions have been investigated in deltas or coastal plain channels as a result of obstructions such as log-jams and possible tectonic influences. [13]

See also

Related Research Articles

Levee Ridge or wall to hold back water

A levee, dike, dyke, embankment, floodbank, or stop bank is a structure that is usually earthen and that often runs parallel to the course of a river in its floodplain or along low-lying coastlines. The purpose of a levee is to keep the course of rivers from changing and to protect against flooding of the area adjoining the river or coast. Levees can be naturally occurring ridge structures that form next to the bank of a river, or be an artificially constructed fill or wall that regulates water levels. Ancient civilizations in the Indus Valley, ancient Egypt, Mesopotamia and China all built levees. Today, levees can be found around the world, and failures of levees due to erosion or other causes can be major disasters.

Sediment Particulate solid matter that is deposited on the surface of land

Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand and silt can be carried in suspension in river water and on reaching the sea bed deposited by sedimentation; if buried, they may eventually become sandstone and siltstone through lithification.

Floodplain Land adjacent to a river which is flooded during periods of high discharge

A floodplain or flood plain or bottomlands is an area of land adjacent to a river which stretches from the banks of its channel to the base of the enclosing valley walls, and which experiences flooding during periods of high discharge. The soils usually consist of clays, silts, sands, and gravels deposited during floods.

Braided river Network of river channels separated by small, and often temporary, islands

A braided river, or braided channel, consists of a network of river channels separated by small, often temporary, islands called braid bars or, in English usage, aits or eyots. Braided streams tend to occur in rivers with high sediment loads and/or coarse grain sizes, and in rivers with steeper slopes than typical rivers with straight or meandering channel patterns. They are also associated with rivers with rapid and frequent variation in the amount of water they carry, i.e., with "flashy" rivers, and with rivers with weak banks. Braided channels are found in a variety of environments all over the world, including gravelly mountain streams, sand bed rivers, on alluvial fans, on river deltas, and across depositional plains.

River delta Silt deposition landform at the mouth of a river

A river delta is a landform created by deposition of sediment that is carried by a river as the flow leaves its mouth and enters slower-moving or stagnant water. This occurs where a river enters an ocean, sea, estuary, lake, reservoir, or another river that cannot carry away the supplied sediment. The size and shape of a delta is controlled by the balance between watershed processes that supply sediment, and receiving basin processes that redistribute, sequester, and export that sediment. The size, geometry, and location of the receiving basin also plays an important role in delta evolution.

Alluvial fan Fan-shaped deposit of sediment

An alluvial fan is an accumulation of sediments that fans outwards from a concentrated source of sediments, such as a narrow canyon emerging from an escarpment. They are characteristic of mountainous terrain in arid to semiarid climates, but are also found in more humid environments subject to intense rainfall and in areas of modern glaciation. They range in area from less than 1 square kilometer (0.4 sq mi) to almost 20,000 square kilometers (7,700 sq mi).

Fluvial processes Processes associated with rivers and streams

In geography and geology, fluvial processes are associated with rivers and streams and the deposits and landforms created by them. When the stream or rivers are associated with glaciers, ice sheets, or ice caps, the term glaciofluvial or fluvioglacial is used.

Landforms are categorized by characteristic physical attributes such as their creating process, shape, elevation, slope, orientation, rock exposure, and soil type.

Alluvial plain Region on which rivers have deposited sediment

An alluvial plain is a largely flat landform created by the deposition of sediment over a long period of time by one or more rivers coming from highland regions, from which alluvial soil forms. A floodplain is part of the process, being the smaller area over which the rivers flood at a particular period of time, whereas the alluvial plain is the larger area representing the region over which the floodplains have shifted over geological time.

Meander Sinuous bend in a series in the channel of a river

A meander is one of a series of regular sinuous curves in the channel of a river or other watercourse. It is produced as a watercourse erodes the sediments of an outer, concave bank and deposits sediments on an inner, convex bank which is typically a point bar. The result of this coupled erosion and sedimentation is the formation of a sinuous course as the channel migrates back and forth across the axis of a floodplain.

An overbank is an alluvial geological deposit consisting of sediment that has been deposited on the floodplain of a river or stream by flood waters that have broken through or overtopped the banks. The sediment is carried in suspension, and because it is carried outside of the main channel, away from faster flow, the sediment is typically fine-grained. An overbank deposit usually consists primarily of fine sand, silt and clay. Overbank deposits can be beneficial because they refresh valley soils.

A crevasse splay is a sedimentary fluvial deposit which forms when a stream breaks its natural or artificial levees and deposits sediment on a floodplain. A breach that forms a crevasse splay deposits sediments in similar pattern to an alluvial fan deposit. Once the levee has been breached the water flows out of its channel. As the water spreads onto the flood plain sediments will start to fall out of suspension as the water loses energy. The resulting deposition can create graded deposits similar to those found in Bouma sequences. In some cases crevasse splays can cause a river to abandon its old river channel, a process known as avulsion. Breaches that form a crevasse splay deposits occur most commonly on the outside banks of meanders where the water has the highest energy. Crevasse splay deposits can range in size. Larger deposits can be 6 m (20 ft) thick at the levee and spread 2 km (1.2 mi) wide, while smaller deposits may only be 1 cm (0.39 in) thick.

Abyssal channels are channels in Earth's sea floor. They are formed by fast-flowing floods of turbid water caused by avalanches near the channel's head, with the sediment carried by the water causing a build-up of the surrounding abyssal plains. Submarine channels and the turbidite systems which form them are responsible for the accumulation of most sandstone deposits found on continental slopes and have proven to be one of the most common types of hydrocarbon reservoirs found in these regions.

Backswamp Environment on a floodplain where deposits settle after a flood

In geology, a backswamp is a type of depositional environment commonly found in a floodplain. It is where deposits of fine silts and clays settle after a flood. These deposits create a marsh-like landscape that is often poorly drained and usually lower than the rest of the floodplain.

Bar (river morphology) Elevated region of sediment in a river that has been deposited by the flow

A bar in a river is an elevated region of sediment that has been deposited by the flow. Types of bars include mid-channel bars, point bars, and mouth bars. The locations of bars are determined by the geometry of the river and the flow through it. Bars reflect sediment supply conditions, and can show where sediment supply rate is greater than the transport capacity.

River channel migration is the geomorphological process that involves the lateral migration of an alluvial river channel across its floodplain. This process is mainly driven by the combination of bank erosion of and point bar deposition over time. When referring to river channel migration, it is typically in reference to meandering streams. In braided streams, channel change is driven by sediment transport.

Alluvial river

An alluvial river is one in which the bed and banks are made up of mobile sediment and/or soil. Alluvial rivers are self-formed, meaning that their channels are shaped by the magnitude and frequency of the floods that they experience, and the ability of these floods to erode, deposit, and transport sediment. For this reason, alluvial rivers can assume a number of forms based on the properties of their banks; the flows they experience; the local riparian ecology; and the amount, size, and type of sediment that they carry.

Meander cutoff

A meander cutoff is a natural form of a cutting or cut in a river occurs when a pronounced meander (hook) in a river is breached by a flow that connects the two closest parts of the hook to form a new channel, a full loop. The steeper drop in gradient (slope) causes the river flow gradually to abandon the meander which will silt up with sediment from deposition. Cutoffs are a natural part of the evolution of a meandering river. Rivers form meanders as they flow laterally downstream, see sinuosity.

Slip-off slope Depositional landform on the inside convex bank of a meandering river

A slip-off slope is a depositional landform that occurs on the inside convex bank of a meandering river. The term can refer to two different features: one in a freely meandering river with a floodplain and the other in an entrenched river.

Legacy sediment (LS) is depositional bodies of sediment inherited from the increase of human activities since the Neolithic. These include a broad range of land use and land cover changes, such as agricultural clearance, lumbering and clearance of native vegetation, mining, road building, urbanization, as well as alterations brought to river systems in the form of dams and other engineering structures meant to control and regulate natural fluvial processes. The concept of LS is used in geomorphology, ecology, as well as in water quality and toxicological studies.

References

  1. 1 2 3 Slingerland, Rudy; Smith, Norman D. (1998). "Necessary conditions for a meandering-river avulsion". Geology. 26 (5): 435–438. Bibcode:1998Geo....26..435S. doi:10.1130/0091-7613(1998)026<0435:NCFAMR>2.3.CO;2.
  2. Marshak, Stephen (2001), Earth: Portrait of a Planet, New York: W.W. Norton & Company, ISBN   0-393-97423-5 pp. 5289
  3. Stanley, Steven M. (1999) Earth System History. New York: W.H. Freeman and Company, ISBN   0-7167-2882-6 p. 136
  4. Marshak, pp. 5289
  5. Stanley, p. 136
  6. Easterbrook, Don J.Surface Processes and Landforms Second EditionPrentice Hall, New Jersey: 1999.
  7. Bryant, M.; Falk, P.; Paola, C. (1995). "Experimental study of avulsion frequency and rate of deposition". Geology. 23 (4): 365–368. Bibcode:1995Geo....23..365B. doi:10.1130/0091-7613(1995)023<0365:ESOAFA>2.3.CO;2.
  8. Mohrig, D.; Heller, P. L.; Paola, C.; Lyons, W. J. (2000). "Interpreting avulsion process from ancient alluvial sequences: Guadalope-Matarranya system (northern Spain) and Wasatch Formation (western Colorado)". Geological Society of America Bulletin. 112 (12): 1787–1803. Bibcode:2000GSAB..112.1787M. doi:10.1130/0016-7606(2000)112<1787:IAPFAA>2.0.CO;2.
  9. Slingerland, Rudy; Smith, Norman D. (2004). "River Avulsions and Their Deposits". Annual Review of Earth and Planetary Sciences. 32: 257–285. Bibcode:2004AREPS..32..257S. doi:10.1146/annurev.earth.32.101802.120201.
  10. Perignon, M. C. (2007). Mechanisms governing avulsions in transient landscapes: Analysis of the May 2006 Suncook River Avulsion in Epsom, New Hampshire (S.B. Thesis). Massachusetts Institute of Technology.
  11. Perignon, M. C. (2008). Sediment wave-induced channel evolution following the 2006 avulsion of the Suncook River in Epsom, New Hampshire (Thesis). Massachusetts Institute of Technology. hdl:1721.1/45792.
  12. Nanson, G.C.; Knighton, A.D. (1996). "Anabranching rivers: Their cause, character, and classification". Earth Surface Processes and Landforms. 21 (3): 217–39. Bibcode:1996ESPL...21..217N. doi:10.1002/(SICI)1096-9837(199603)21:3<217::AID-ESP611>3.0.CO;2-U.
  13. Phillips, J. D. (2012). "Log-jams and avulsions in the San Antonio River Delta, Texas". Earth Surface Processes and Landforms. 37 (9): 936–950. Bibcode:2012ESPL...37..936P. doi:10.1002/esp.3209.