Sea foam

Last updated

Sea foam washed up or blown onto a beach Sea foam at Ocean Beach in San Francisco -1 on 3-25-11.jpg
Sea foam washed up or blown onto a beach

Sea foam, ocean foam, beach foam, or spume is a type of foam created by the agitation of seawater, particularly when it contains higher concentrations of dissolved organic matter (including proteins, lignins, and lipids) derived from sources such as the offshore breakdown of algal blooms. [1] These compounds can act as surfactants or foaming agents. As the seawater is churned by breaking waves in the surf zone adjacent to the shore, the surfactants under these turbulent conditions trap air, forming persistent bubbles that stick to each other through surface tension.

Contents

Sea foam is a global phenomenon, [1] and it varies depending on location and the potential influence of the surrounding marine, freshwater, and/or terrestrial environments. [2] Due to its low density and persistence, foam can be blown by strong on-shore winds inland, towards the beach. Human activities, such as production, transport or spillage of petroleum products or detergents, can also contribute to the formation of sea foam.

Formation

Sea foam is formed under conditions that are similar to the formation of sea spray. One of the main distinctions from sea spray formation is the presence of higher concentrations of dissolved organic matter from macrophytes and phytoplankton. The dissolved organic matter in the surface water, which can be derived from the natural environment or human-made sources, provides stability to the resulting sea foam. [3]

Connection between sea foam and sea spray formation. The dark orange line indicates processes common to the formation of both sea spray and sea foam. Sea spray sea foam connection.png
Connection between sea foam and sea spray formation. The dark orange line indicates processes common to the formation of both sea spray and sea foam.

The physical processes that contribute to sea foam formation are breaking surface waves, bubble entrainment, a process of bubbles being incorporated or captured within a liquid such as sea water and whitecap formation. [4] Breaking of surface waves injects air from the atmosphere into the water column, leading to bubble creation. These bubbles get transported around the top few meters of the surface ocean due to their buoyancy. The smallest bubbles entrained in the water column dissolve entirely, leading to higher ratios of dissolved gases in the surface ocean. The bubbles that do not dissolve eventually make it back to the surface. As they rise, these bubbles accumulate hydrophobic substances. Presence of dissolved organic matter stabilizes the bubbles, aggregating together as sea foam. [1] Some studies on sea foam report that breaking of algal cells in times of heavy swells makes sea foam production more likely. [3]

Falling rain drops on the sea surface can also contribute to sea foam formation and destruction. [5] There have been some non-mechanistic studies demonstrating increased sea foam formation due to high rainfall events. [2] Turbulence in the surface mixed layer can affect the concentration of dissolved organic matter and aids in the formation of nutrient-dense foam. [6]

Composition

Sea foam usually contains a mixture of decomposed organic materials Brandung (MW 2015.02.27.).JPG
Sea foam usually contains a mixture of decomposed organic materials

The composition of sea foam is generally a mixture of decomposed organic materials, including zooplankton, phytoplankton, algae (including diatoms [7] ), bacteria, fungi, protozoans, and vascular plant detritus, [6] though each occurrence of sea foam varies in its specific contents. In some areas, sea foam is found to be made up of primarily protein, dominant in both fresh and old foam, as well as lipids and carbohydrates. The high protein and low carbohydrate concentration suggest that sugars originally present in the surrounding mucilage created by algae or plant matter has been quickly consumed by bacteria. [3] Additional research has shown that a small fraction of the dry weight in sea foam is organic carbon, which contains phenolics, sugars, amino sugars, and amino acids. In the Bay of Fundy, high mortality rates of an abundant tube-dwelling amphipod ( Corophium volutator) by natural die-offs as well as predation by migrating seabirds contributed to amino sugars released in the surrounding environment and thus, in sea foam. [6]

The organic matter in sea foam has been found to increase dramatically during phytoplankton blooms in the area. [8] Some research has shown very high concentrations of microplankton in sea foam, with significantly higher numbers of autotrophic phytoplankton than heterotrophs [7] Some foams are particularly rich in their diatom population which can make up the majority of the microalgal biomass in some cases. [7] A diversity of bacteria is also present in sea foam; old foam tends to have a higher density of bacteria. One study found that 95% of sea foam bacteria were rod-shaped, while the surrounding surface water contained mostly coccoid-form bacteria and only 5% - 10% rod-shaped bacteria. [3] There is also seasonal variability of sea foam composition; [6] in some regions there is a seasonal occurrence of pollen in sea foam which can alter its chemistry. [2] Though foam is not inherently toxic, it may contain high concentrations of contaminants. [1] Foam bubbles can be coated with or contain these materials which can include petroleum compounds, pesticides, and herbicides. [1]

Longevity and stability

Sea foam off Vancouver Island

Structurally, sea foam is thermodynamically unstable, though some sea foam can persist in the environment for several days at most. There are two types of sea foam categorized based on their stability: 1) Unstable or transient foams have very short lifetimes of only seconds. The bubbles formed in sea foam may burst releasing aerosols into the air, contributing to sea spray. 2) Metastable foams can have a lifetime of several hours to several days; their duration is sometimes attributed to small particles of silica, calcium, or iron which contribute to foam stability and longevity. [1] Additionally, seawater that contains released dissolved organic material from phytoplankton and macrophytic algae that is then agitated in its environment is most likely to produce stable, longer-lasting foam when compared with seawater lacking one of those components. For example, filtered seawater when added to the fronds of the kelp, Ecklonia maxima, produced foam but it lacked the stability that unfiltered seawater provided. Additionally, kelp fronds that were maintained in flowing water therefore reducing their mucus coating, were unable to help foam form. [3] Different types of salt are also found to have varying effects on bubble proximity within sea foam, therefore contributing to its stability. [1]

Ecological role

Food source

Bubbles of plankton-enriched foam left in a tide pool after high tide Plankton creates sea foam 2.jpg
Bubbles of plankton-enriched foam left in a tide pool after high tide

The presence of sea foam in the marine environment plays a number of ecological roles including providing sources of food and creating habitat. As a food source, sea foam with a stable composition is more important ecologically, as it is able to persist longer and can transport nutrients within the marine environment. [3] Longer decay times result in a higher chance that energy contained in sea foam will move up the food web into higher trophic levels. [3] In the Bay of Fundy for example, a tube-dwelling amphipod, Corophium volutator, can potentially attain 70% of its nutritional requirements from the sugars and amino acids derived from sea foam in its environment. At times however, the sea foam was found to be toxic to this species. It is thought that high concentrations of phenolics and/or the occasional presence of heavy metals or pesticides incorporated into the sea foam from the sea surface contributed to its toxicity. [6] On the west coast of Cape Peninsula, South Africa, sea foam often occurs in nearshore marine areas with large kelp beds during periods of strong westerly winds. It is thought that the foam generated in these conditions is an important food source for local organisms due to the presence of organic detritus in the sea foam. [3]

Material transport

Sea foam also acts as a mode of transport for both organisms and nutrients within the marine environment and, at times, into the intertidal or terrestrial environments. Wave action can deposit foam into intertidal areas where it can remain when the tide recedes, bringing nutrients to the intertidal zone. [6] Additionally, sea foam can become airborne in windy conditions, transporting materials between marine and terrestrial environments. [2] The ability of sea foam to transport materials is also thought to benefit macroalgal organisms, as macroalgae propagules can be carried to different microenvironments, thus influencing the tidal landscape and contributing to new possible ecological interactions. [9] As sea foam is a wet environment, it is conducive habitat to algal spores where propagules can attach to the substrate and avoid risk of dissemination. [9] When sea foam contains fungi, it can also aid in the decomposition of plant and animal remains in coastal ecosystems. [2]

Habitat

Additionally, sea foam is a habitat for a number of marine microorganisms. Some research has shown the presence of various microphytoplanktonic, nanophytoplanktonic, and diatom groups in seafoam; the phytoplankton groups appeared in significantly higher abundance than in sea surface film and the top pelagic zone [7]

Hazards

Toxicity

Naturally occurring sea foam is not inherently toxic; however, it can be exposed to high concentrations of contaminants in the surface microlayer derived from the breakdown of algal blooms, fossil fuel production and transport, and stormwater runoff. [1] These contaminants contribute to the formation of noxious sea foam through adsorption onto bubbles. Bubbles may burst and release toxins into the atmosphere in the form of sea spray or aerosol, or they may persist in foams. Toxins released through aerosols and breaking bubbles can be inhaled by humans. The microorganisms that occupy sea foams as habitat have increased susceptibility for contaminant exposure. [10] Consequently, these toxic substances can be integrated into the trophic food web. [1]

Harmful algal blooms

Foams can form following the degradation of harmful algal blooms (HABs). These are primarily composed of algal species, but can also consist of dinoflagellates and cyanobacteria. [11] Biomass from algae in the bloom is integrated into sea foam in the sea surface microlayer. [9] When the impacted sea foam breaks down, toxins from the algae are released into the air causing respiratory issues and occasionally initiating asthma attacks. [12] Phaeocystis globosa is one algal species that is considered problematic, as observed in a study in the Netherlands. [11] Its high biomass accumulation allows it to create large quantities of toxic foam that often wash onto beaches. P. globosa blooms are initiated in areas of high nutrient availability, often affiliated with coastal locations with a lot of stormwater runoff and eutrophication. Studies suggest that the development of foam is directly correlated to blooms caused by P. globosa, despite that foam formation typically occurs approximately two weeks after the appearance of an algal bloom offshore. Organic material from P. globosa was observed decomposing while suspended at the sea surface, but was not observed lower in the water column. P. globosa is also considered a nuisance species because its large foam formations impair the public's ability to enjoy the beach. [11]

Human activities

While sea foam is a common result of the agitation of seawater mixing with organic material in the surface ocean, human activities can contribute to the production of excess and often toxic foam. [1] In addition to the organic oils, acids, and proteins that amass in the sea surface microlayer, compounds derived from petroleum production and transport, synthetic surfactants, and pesticide use can enter the sea surface and be incorporated into foam. The pollutants present can also affect the persistence of the foam produced. Crude oil discharged from tankers, motor oil, sewage, and detergents from polluted runoff can create longer-lasting foams. [1] In one study, polychlorinated biphenyls (PCBs), a persistent organic pollutant, were found to amass in sea foams. [10]

Natural gas terminals have been cited as contributors to the production of modified foams due to the process of using seawater to convert natural gas to liquified natural gas. [13] One study showed a much greater abundance of heterotrophic prokaryotes (archaea and bacteria) and cyanobacteria in foam that was generated near a liquified natural gas terminal. These prokaryotes were able to recycle chemical materials discharged from the terminal, which enhanced microbial growth. Additionally, higher levels of total organic carbon (TOC) and plankton biomass were recorded in foam generated in close proximity to the terminal. Organic carbon was transferred readily into the pelagic food web after uptake by prokaryotes and ingestion by grazers. [13]

Notable occurrences

See also

Related Research Articles

<span class="mw-page-title-main">Plankton</span> Organisms living in water or air that are drifters on the current or wind

Plankton are the diverse collection of organisms found in water that are unable to propel themselves against a current. The individual organisms constituting plankton are called plankters. In the ocean, they provide a crucial source of food to many small and large aquatic organisms, such as bivalves, fish, and baleen whales.

<span class="mw-page-title-main">Algal bloom</span> Spread of planktonic algae in water

An algal bloom or algae bloom is a rapid increase or accumulation in the population of algae in freshwater or marine water systems. It is often recognized by the discoloration in the water from the algae's pigments. The term algae encompasses many types of aquatic photosynthetic organisms, both macroscopic multicellular organisms like seaweed and microscopic unicellular organisms like cyanobacteria. Algal bloom commonly refers to the rapid growth of microscopic unicellular algae, not macroscopic algae. An example of a macroscopic algal bloom is a kelp forest.

<span class="mw-page-title-main">Phytoplankton</span> Autotrophic members of the plankton ecosystem

Phytoplankton are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words φυτόν, meaning 'plant', and, meaning 'wanderer' or 'drifter'.

Ice algae are any of the various types of algal communities found in annual and multi-year sea, and terrestrial lake ice or glacier ice.

<span class="mw-page-title-main">Sea spray</span> Sea water particles that are formed directly from the ocean

Sea spray are aerosol particles formed from the ocean, mostly by ejection into Earth's atmosphere by bursting bubbles at the air-sea interface. Sea spray contains both organic matter and inorganic salts that form sea salt aerosol (SSA). SSA has the ability to form cloud condensation nuclei (CCN) and remove anthropogenic aerosol pollutants from the atmosphere. Coarse sea spray has also been found to inhibit the development of lightning in storm clouds.

<span class="mw-page-title-main">Redfield ratio</span>

The Redfield ratio or Redfield stoichiometry is the consistent atomic ratio of carbon, nitrogen and phosphorus found in marine phytoplankton and throughout the deep oceans.

<span class="mw-page-title-main">Phosphorus cycle</span> Biogeochemical movement

The phosphorus cycle is the biogeochemical cycle that involves the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based materials do not enter the gaseous phase readily. The production of phosphine gas occurs in isolated and specific conditions. Therefore, the phosphorus cycle is primarily viewed through terrestrial and aquatic ecosystems.

<span class="mw-page-title-main">Fish kill</span> Localized die-off of fish populations

The term fish kill, known also as fish die-off, refers to a localized die-off of fish populations which may also be associated with more generalized mortality of aquatic life. The most common cause is reduced oxygen in the water, which in turn may be due to factors such as drought, algae bloom, overpopulation, or a sustained increase in water temperature. Infectious diseases and parasites can also lead to fish kill. Toxicity is a real but far less common cause of fish kill.

<span class="mw-page-title-main">Sea surface microlayer</span> Boundary layer where all exchange occurs between the atmosphere and the ocean

The sea surface microlayer (SML) is the boundary interface between the atmosphere and ocean, covering about 70% of Earth's surface. With an operationally defined thickness between 1 and 1,000 μm (1.0 mm), the SML has physicochemical and biological properties that are measurably distinct from underlying waters. Recent studies now indicate that the SML covers the ocean to a significant extent, and evidence shows that it is an aggregate-enriched biofilm environment with distinct microbial communities. Because of its unique position at the air-sea interface, the SML is central to a range of global marine biogeochemical and climate-related processes.

<span class="mw-page-title-main">Harmful algal bloom</span> Population explosion of organisms that can kill marine life

A harmful algal bloom (HAB), or excessive algae growth, is an algal bloom that causes negative impacts to other organisms by production of natural algae-produced toxins, mechanical damage to other organisms, or by other means. HABs are sometimes defined as only those algal blooms that produce toxins, and sometimes as any algal bloom that can result in severely lower oxygen levels in natural waters, killing organisms in marine or fresh waters. Blooms can last from a few days to many months. After the bloom dies, the microbes that decompose the dead algae use up more of the oxygen, generating a "dead zone" which can cause fish die-offs. When these zones cover a large area for an extended period of time, neither fish nor plants are able to survive. Harmful algal blooms in marine environments are often called "red tides".

<span class="mw-page-title-main">Marine snow</span> Shower of organic detritus in the ocean

In the deep ocean, marine snow is a continuous shower of mostly organic detritus falling from the upper layers of the water column. It is a significant means of exporting energy from the light-rich photic zone to the aphotic zone below, which is referred to as the biological pump. Export production is the amount of organic matter produced in the ocean by primary production that is not recycled (remineralised) before it sinks into the aphotic zone. Because of the role of export production in the ocean's biological pump, it is typically measured in units of carbon. The term was coined by explorer William Beebe as observed from his bathysphere. As the origin of marine snow lies in activities within the productive photic zone, the prevalence of marine snow changes with seasonal fluctuations in photosynthetic activity and ocean currents. Marine snow can be an important food source for organisms living in the aphotic zone, particularly for organisms that live very deep in the water column.

<span class="mw-page-title-main">Bacterioplankton</span> Bacterial component of the plankton that drifts in the water column

Bacterioplankton refers to the bacterial component of the plankton that drifts in the water column. The name comes from the Ancient Greek word πλανκτος, meaning "wanderer" or "drifter", and bacterium, a Latin term coined in the 19th century by Christian Gottfried Ehrenberg. They are found in both seawater and freshwater.

Phycotoxins are complex allelopathic chemicals produced by eukaryotic and prokaryotic algal secondary metabolic pathways. More simply, these are toxic chemicals synthesized by photosynthetic organisms. These metabolites are not harmful to the producer but may be toxic to either one or many members of the marine food web. This page focuses on phycotoxins produced by marine microalgae; however, freshwater algae and macroalgae are known phycotoxin producers and may exhibit analogous ecological dynamics. In the pelagic marine food web, phytoplankton are subjected to grazing by macro- and micro-zooplankton as well as competition for nutrients with other phytoplankton species. Marine bacteria try to obtain a share of organic carbon by maintaining symbiotic, parasitic, commensal, or predatory interactions with phytoplankton. Other bacteria will degrade dead phytoplankton or consume organic carbon released by viral lysis. The production of toxins is one strategy that phytoplankton use to deal with this broad range of predators, competitors, and parasites. Smetacek suggested that "planktonic evolution is ruled by protection and not competition. The many shapes of plankton reflect defense responses to specific attack systems". Indeed, phytoplankton retain an abundance of mechanical and chemical defense mechanisms including cell walls, spines, chain/colony formation, and toxic chemical production. These morphological and physiological features have been cited as evidence for strong predatory pressure in the marine environment. However, the importance of competition is also demonstrated by the production of phycotoxins that negatively impact other phytoplankton species. Flagellates are the principle producers of phycotoxins; however, there are known toxigenic diatoms, cyanobacteria, prymnesiophytes, and raphidophytes. Because many of these allelochemicals are large and energetically expensive to produce, they are synthesized in small quantities. However, phycotoxins are known to accumulate in other organisms and can reach high concentrations during algal blooms. Additionally, as biologically active metabolites, phycotoxins may produce ecological effects at low concentrations. These effects may be subtle, but have the potential to impact the biogeographic distributions of phytoplankton and bloom dynamics.

All living cells produce reactive oxygen species (ROS) as a byproduct of metabolism. ROS are reduced oxygen intermediates that include the superoxide radical (O2) and the hydroxyl radical (OH•), as well as the non-radical species hydrogen peroxide (H2O2). These ROS are important in the normal functioning of cells, playing a role in signal transduction and the expression of transcription factors. However, when present in excess, ROS can cause damage to proteins, lipids and DNA by reacting with these biomolecules to modify or destroy their intended function. As an example, the occurrence of ROS have been linked to the aging process in humans, as well as several other diseases including Alzheimer's, rheumatoid arthritis, Parkinson's, and some cancers. Their potential for damage also makes reactive oxygen species useful in direct protection from invading pathogens, as a defense response to physical injury, and as a mechanism for stopping the spread of bacteria and viruses by inducing programmed cell death.

<i>Phaeocystis</i> Genus of single-celled organisms

Phaeocystis is a genus of algae belonging to the Prymnesiophyte class and to the larger division of Haptophyta. It is a widespread marine phytoplankton and can function at a wide range of temperatures (eurythermal) and salinities (euryhaline). Members of this genus live in the open ocean, as well as in sea ice. It has a polymorphic life cycle, ranging from free-living cells to large colonies.

<span class="mw-page-title-main">Marine biogenic calcification</span> Shell formation mechanism

Marine biogenic calcification is the production of calcium carbonate by organisms in the global ocean.

<span class="mw-page-title-main">North Atlantic Aerosols and Marine Ecosystems Study</span>

The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) was a five-year scientific research program that investigated aspects of phytoplankton dynamics in ocean ecosystems, and how such dynamics influence atmospheric aerosols, clouds, and climate. The study focused on the sub-arctic region of the North Atlantic Ocean, which is the site of one of Earth's largest recurring phytoplankton blooms. The long history of research in this location, as well as relative ease of accessibility, made the North Atlantic an ideal location to test prevailing scientific hypotheses in an effort to better understand the role of phytoplankton aerosol emissions on Earth's energy budget.

Lepidodinium is a genus of dinoflagellates belonging to the family Gymnodiniaceae. Lepidodinium is a genus of green dinoflagellates in the family Gymnodiniales. It contains two different species, Lepidodiniumchlorophorum and Lepidodinium viride. They are characterised by their green colour caused by a plastid derived from Pedinophyceae, a green algae group. This plastid has retained chlorophyll a and b, which is significant because it differs from the chlorophyll a and c usually observed in dinoflagellate peridinin plastids. They are the only known dinoflagellate genus to possess plastids derived from green algae. Lepidodinium chlorophorum is known to cause sea blooms, partially off the coast of France, which has dramatic ecological and economic consequences. Lepidodinium produces some of the highest volumes of Transparent Exopolymer Particles of any phytoplankton, which can contribute to bivalve death and the creation of anoxic conditions in blooms, as well as playing an important role in carbon cycling in the ocean.

Evelyn Lessard is a biological oceanographer and a professor at the University of Washington's School of Oceanography.

An anchialine system is a landlocked body of water with a subterranean connection to the ocean. Depending on its formation, these systems can exist in one of two primary forms: pools or caves. The primary differentiating characteristics between pools and caves is the availability of light; cave systems are generally aphotic while pools are euphotic. The difference in light availability has a large influence on the biology of a given system. Anchialine systems are a feature of coastal aquifers which are density stratified, with water near the surface being fresh or brackish, and saline water intruding from the coast at depth. Depending on the site, it is sometimes possible to access the deeper saline water directly in the anchialine pool, or sometimes it may be accessible by cave diving.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 Schilling, Katerina; Zessner, Matthias (1 October 2011). "Foam in the aquatic environment". Water Research. 45 (15): 4355–4366. Bibcode:2011WatRe..45.4355S. doi:10.1016/j.watres.2011.06.004. ISSN   0043-1354. PMID   21757217.
  2. 1 2 3 4 5 HAROLD, E.; SCHLICHTING, JR. (1971). "A Preliminary Study of the Algae and Protozoa in Seafoam". Botanica Marina. 14 (1). doi:10.1515/botm.1971.14.1.24. ISSN   0006-8055. S2CID   84135769.
  3. 1 2 3 4 5 6 7 8 Velimirov, B. (1980). "Formation and potential trophic significance of marine foam near kelp beds in the benguela upwelling system". Marine Biology. 58 (4): 311–318. Bibcode:1980MarBi..58..311V. doi:10.1007/bf00390779. ISSN   0025-3162. S2CID   86228098.
  4. "Is Sea Foam Whale Sperm | STP News". 6 June 2023. Retrieved 6 June 2023.
  5. Veron, Fabrice (3 January 2015). "Ocean Spray". Annual Review of Fluid Mechanics. 47 (1): 507–538. Bibcode:2015AnRFM..47..507V. doi:10.1146/annurev-fluid-010814-014651. ISSN   0066-4189.
  6. 1 2 3 4 5 6 Craig, Douglas; Ireland, Robert J.; Bärlocher, Felix (September 1989). "Seasonal variation in the organic composition of seafoam". Journal of Experimental Marine Biology and Ecology. 130 (1): 71–80. doi:10.1016/0022-0981(89)90019-1. ISSN   0022-0981.
  7. 1 2 3 4 Druzhkov, Nikolai V.; Makarevich, Pavel R.; Bardan, Sergei I. (12 January 1997). "Sea foam as an object of sea-surface film studies". Polar Research. 16 (2): 117–121. doi: 10.3402/polar.v16i2.6630 . ISSN   1751-8369.
  8. O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Bialek, Jakub; Stengel, Dagmar B.; Zacharias, Merry; Nitschke, Udo; Connan, Solene; Rinaldi, Matteo (14 October 2015). "Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?". Scientific Reports. 5: 14883. Bibcode:2015NatSR...514883O. doi:10.1038/srep14883. ISSN   2045-2322. PMC   4604474 . PMID   26464099.
  9. 1 2 3 Meneses, Isabel (June 1993). "Foam as a dispersal agent in the rocky intertidal of central Chile". European Journal of Phycology. 28 (2): 107–110. Bibcode:1993EJPhy..28..107M. doi: 10.1080/09670269300650171 . ISSN   0967-0262.
  10. 1 2 Napolitano, Guillermo E.; Richmond, Jacqueline E. (February 1995). "Enrichment of biogenic lipids, hydrocarbons and PCBs in stream-surface foams". Environmental Toxicology and Chemistry. 14 (2): 197–201. doi:10.1002/etc.5620140203. ISSN   0730-7268.
  11. 1 2 3 Blauw, A.N.; Los, F.J.; Huisman, J.; Peperzak, L. (November 2010). "Nuisance foam events and Phaeocystis globosa blooms in Dutch coastal waters analyzed with fuzzy logic". Journal of Marine Systems. 83 (3–4): 115–126. Bibcode:2010JMS....83..115B. doi:10.1016/j.jmarsys.2010.05.003. ISSN   0924-7963.
  12. "Why do harmful algal blooms occur?". National Oceanic and Atmospheric Administration . Retrieved 28 November 2018.
  13. 1 2 Franzo, Annalisa; Karuza, Ana; Celussi, Mauro; Fornasaro, Daniela; Beran, Alfred; Di Poi, Elena; Del Negro, Paola (17 April 2015). "Foam production as a side effect of an offshore liquefied natural gas terminal: how do plankton deal with it?". Environmental Science and Pollution Research. 22 (11): 8763–8772. Bibcode:2015ESPR...22.8763F. doi:10.1007/s11356-015-4499-2. ISSN   0944-1344. PMID   25877905. S2CID   30716771.
  14. Samantha Williams, Yamba hit by foam lather, The Daily Telegraph, 27 August 2007. accessed 5 November 2010.
  15. Eric Shackle, Australia Foams at the Mouth Archived 14 March 2012 at the Wayback Machine , OhmyNews, 26 January 2008. accessed 5 November 2010.
  16. Brett M.Christensen, Whipped Ocean – Beach Foam at Yamba New South Wales Archived 8 October 2016 at the Wayback Machine , Hoax-Slayer.com, August 2008. accessed 5 November 2010.
  17. A. Lander, The foam is back!, Sunshine Coast Daily, 20 February 2008. accessed 5 November 2010.
  18. A. Lander, No place like foam Sunshine Coast Daily, 24 January 2008. Retrieved 5 November 2010.
  19. Mark Furler, Foam a global hit, Sunshine Coast Daily, 26 January 2008. accessed 5 November 2010.
  20. "Sea foam swamps cars at seaside resort of Cleveleys". BBC News. 29 December 2011. Retrieved 30 November 2012.
  21. "FOX 5's Tucker Barnes Braves the Sea Foam in Ocean City". Fox 5. Archived from the original on 16 January 2012.
  22. "Foam swept in as gales hit Scotland". BBC News. 28 September 2012. Retrieved 30 November 2012.
  23. "Sunshine Coast Winter Wonderland". Ninemsn. 28 January 2013. Archived from the original on 29 January 2013. Retrieved 28 January 2013.
  24. "East coast low: Sea foam whipped up by storms could be hazardous to health, toxicologist warns". abc.net.au. 7 June 2016. Retrieved 11 September 2017.
  25. "Thick sea foam rolls onto Sarina Beach during Cyclone Debbie". abc.net.au. 28 March 2017. Retrieved 11 September 2017.
  26. Storm Ophelia: Town engulfed in foam as ex-hurricane sparks freak weather phenomenon The Independent, 16 October 2017. accessed 18 October 2017.
  27. "Eleanor whips up sea foam party for dog". BBC News. Retrieved 4 January 2018.
  28. "It's Not Snow: Storm Sends Sea Foam Flying At Nantasket Beach". CBS Boston. 11 October 2019. Retrieved 14 October 2019.
  29. "Sea foam engulfs Spanish streets". BBC News. Retrieved 22 January 2020.
  30. "Surfing Tragedy That Stunned a Dutch Beach Community". BBC News. 11 June 2020. Retrieved 11 June 2020.
  31. Chothia, Andrea. "Cape Town storm: Gale-force winds, swells and sea foam lash Mother City". The South African. Retrieved 15 July 2020.