Breaking wave

Last updated
Plunging breaker Large breaking wave.jpg
Plunging breaker
Large wave breaking Surfers at Mavericks.jpg
Large wave breaking

In fluid dynamics and nautical terminology, a breaking wave or breaker is a wave with enough energy to "break" at its peak, reaching a critical level at which linear energy transforms into wave turbulence energy with a distinct forward curve. At this point, simple physical models that describe wave dynamics often become invalid, particularly those that assume linear behaviour.

Contents

The most generally familiar sort of breaking wave is the breaking of water surface waves on a coastline. Wave breaking generally occurs where the amplitude reaches the point that the crest of the wave actually overturns. Certain other effects in fluid dynamics have also been termed "breaking waves", partly by analogy with water surface waves. In meteorology, atmospheric gravity waves are said to break when the wave produces regions where the potential temperature decreases with height, leading to energy dissipation through convective instability; likewise, Rossby waves are said to break [1] when the potential vorticity gradient is overturned. Wave breaking also occurs in plasmas, [2] when the particle velocities exceed the wave's phase speed. Another application in plasma physics is plasma expansion into a vacuum, in which the process of wave breaking and the subsequent development of a fast ion peak is described by the Sack-Schamel equation.

A reef or spot of shallow water such as a shoal against which waves break may also be known as a breaker.

Types

Classification of breaking wave types Breaking wave types.svg
Classification of breaking wave types
Breaking wave on a slope in a laboratory wave channel (movie)
Animation showing how the slope of the seafloor along the coast affects breaking waves Breaking waves.gif
Animation showing how the slope of the seafloor along the coast affects breaking waves

Breaking of water surface waves may occur anywhere that the amplitude is sufficient, including in mid-ocean. However, it is particularly common on beaches because wave heights are amplified in the region of shallower water (because the group velocity is lower there). See also waves and shallow water.

There are four basic types of breaking water waves. They are spilling, plunging, collapsing, and surging. [3]

Spilling breakers

When the ocean floor has a gradual slope, the wave will steepen until the crest becomes unstable, resulting in turbulent whitewater spilling down the face of the wave. This continues as the wave approaches the shore, and the wave's energy is slowly dissipated in the whitewater. Because of this, spilling waves break for a longer time than other waves, and create a relatively gentle wave. Onshore wind conditions make spillers more likely.

Plunging breakers

A plunging wave occurs when the ocean floor is steep or has sudden depth changes, such as from a reef or sandbar. The crest of the wave becomes much steeper than a spilling wave, becomes vertical, then curls over and drops onto the trough of the wave, releasing most of its energy at once in a relatively violent impact. A plunging wave breaks with more energy than a significantly larger spilling wave. The wave can trap and compress the air under the lip, which creates the "crashing" sound associated with waves. With large waves, this crash can be felt by beachgoers on land. Offshore wind conditions can make plungers more likely.

If a plunging wave is not parallel to the beach (or the ocean floor), the section of the wave which reaches shallow water will break first, and the breaking section (or curl) will move laterally across the face of the wave as the wave continues. This is the "tube" that is so highly sought after by surfers (also called a "barrel", a "pit", and "the greenroom", among other terms). The surfer tries to stay near or under the crashing lip, often trying to stay as "deep" in the tube as possible while still being able to shoot forward and exit the barrel before it closes. A plunging wave that is parallel to the beach can break along its whole length at once, rendering it unrideable and dangerous. Surfers refer to these waves as "closed out".

Collapsing

Collapsing waves are a cross between plunging and surging, in which the crest never fully breaks, yet the bottom face of the wave gets steeper and collapses, resulting in foam.

Surging

Surging breakers originate from long period, low steepness waves and/or steep beach profiles. The outcome is the rapid movement of the base of the wave up the swash slope and the disappearance of the wave crest. The front face and crest of the wave remain relatively smooth with little foam or bubbles, resulting in a very narrow surf zone, or no breaking waves at all. The short, sharp burst of wave energy means that the swash/backwash cycle completes before the arrival of the next wave, leading to a low value of Kemp's phase difference (< 0.5). Surging waves are typical of reflective beach states. On steeper beaches, the energy of the wave can be reflected by the bottom back into the ocean, causing standing waves.

Physics

Spilling breaker.gif
Spilling breaker
Plunging breaker.gif
Plunging breaker
Collapsing breaker.gif
Collapsing breaker
Surging breaker.gif
Surging breaker
Different breaking-wave types, drawn after photos from a lab experiment, can be associated with the value of the Iribarren number.

During breaking, a deformation (usually a bulge) forms at the wave crest, either leading side of which is known as the "toe". Parasitic capillary waves are formed, with short wavelengths. Those above the "toe" tend to have much longer wavelengths. This theory is anything but perfect, however, as it is linear. There have been a couple non-linear theories of motion (regarding waves). One put forth uses a perturbation method to expand the description all the way to the third order, and better solutions have been found since then. As for wave deformation, methods much like the boundary integral method and the Boussinesq model have been created.

It has been found that high-frequency detail present in a breaking wave plays a part in crest deformation and destabilization. The same theory expands on this, stating that the valleys of the capillary waves create a source for vorticity. It is said that surface tension (and viscosity) are significant for waves up to about 7 cm (3 in) in wavelength. [4]

These models are flawed, however, as they can't take into account what happens to the water after the wave breaks. Post-break eddy forms and the turbulence created via the breaking is mostly unresearched. Understandably, it might be difficult to glean predictable results from the ocean.

After the tip of the wave overturns and the jet collapses, it creates a very coherent and defined horizontal vortex. The plunging breakers create secondary eddies down the face of the wave. Small horizontal random eddies that form on the sides of the wave suggest that, perhaps, prior to breaking, the water's velocity is more or less two dimensional. This becomes three dimensional upon breaking.

The main vortex along the front of the wave diffuses rapidly into the interior of the wave after breaking, as the eddies on the surface become more viscous. Advection and molecular diffusion play a part in stretching the vortex and redistributing the vorticity, as well as the formation turbulence cascades. The energy of the large vortices are, by this method, transferred to much smaller isotropic vortices.

Experiments have been conducted to deduce the evolution of turbulence after break, both in deep water and on a beach.

See also

Related Research Articles

<span class="mw-page-title-main">Surfing</span> Sport of riding waves

Surfing is a surface water sport in which an individual, a surfer, uses a board to ride on the forward section, or face, of a moving wave of water, which usually carries the surfer towards the shore. Waves suitable for surfing are primarily found on ocean shores, but can also be found in standing waves in the open ocean, in lakes, in rivers in the form of a tidal bore, or in wave pools.

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers.

<span class="mw-page-title-main">Vortex</span> Fluid flow revolving around an axis of rotation

In fluid dynamics, a vortex is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil.

<span class="mw-page-title-main">Baroclinity</span> Measure of misalignment between the gradients of pressure and density in a fluid

In fluid dynamics, the baroclinity of a stratified fluid is a measure of how misaligned the gradient of pressure is from the gradient of density in a fluid. In meteorology a baroclinic flow is one in which the density depends on both temperature and pressure. A simpler case, barotropic flow, allows for density dependence only on pressure, so that the curl of the pressure-gradient force vanishes.

<span class="mw-page-title-main">Rip current</span> Water current moving away from shore

A rip current is a specific type of water current that can occur near beaches where waves break. A rip is a strong, localized, and narrow current of water that moves directly away from the shore by cutting through the lines of breaking waves, like a river flowing out to sea. The force of the current in a rip is strongest and fastest next to the surface of the water.

<span class="mw-page-title-main">Kelvin–Helmholtz instability</span> Phenomenon of fluid mechanics

The Kelvin–Helmholtz instability is a fluid instability that occurs when there is velocity shear in a single continuous fluid or a velocity difference across the interface between two fluids. Kelvin-Helmholtz instabilities are visible in the atmospheres of planets and moons, such as in cloud formations on Earth or the Red Spot on Jupiter, and the atmospheres of the Sun and other stars.

<span class="mw-page-title-main">Wind wave</span> Surface waves generated by wind on open water

In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is known as the fetch. Waves in the oceans can travel thousands of kilometers before reaching land. Wind waves on Earth range in size from small ripples to waves over 30 m (100 ft) high, being limited by wind speed, duration, fetch, and water depth.

<span class="mw-page-title-main">Internal wave</span> Type of gravity waves that oscillate within a fluid medium

Internal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance, the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface. If the density changes continuously, the waves can propagate vertically as well as horizontally through the fluid.

In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium.

<span class="mw-page-title-main">Swell (ocean)</span> Series of waves generated by distant weather systems

A swell, also sometimes referred to as ground swell, in the context of an ocean, sea or lake, is a series of mechanical waves that propagate along the interface between water and air under the predominating influence of gravity, and thus are often referred to as surface gravity waves. These surface gravity waves have their origin as wind waves, but are the consequence of dispersion of wind waves from distant weather systems, where wind blows for a duration of time over a fetch of water, and these waves move out from the source area at speeds that are a function of wave period and length. More generally, a swell consists of wind-generated waves that are not greatly affected by the local wind at that time. Swell waves often have a relatively long wavelength, as short wavelength waves carry less energy and dissipate faster, but this varies due to the size, strength, and duration of the weather system responsible for the swell and the size of the water body, and varies from event to event, and from the same event, over time. Occasionally, swells that are longer than 700m occur as a result of the most severe storms.

Wave pounding is the 'sledge hammer' effect of tonnes of water crashing against cliffs. It shakes and weakens the rocks leaving them open to attack from hydraulic action and abrasion. Eroded material gets carried away by the wave. Wave pounding is particularly fierce in a storm, where the waves are exceptionally large, and have a lot of energy. It is an important engineering consideration in the construction of structures such as seawalls and dams.

<span class="mw-page-title-main">Wave shoaling</span> Effect by which surface waves entering shallower water change in wave height

In fluid dynamics, wave shoaling is the effect by which surface waves, entering shallower water, change in wave height. It is caused by the fact that the group velocity, which is also the wave-energy transport velocity, changes with water depth. Under stationary conditions, a decrease in transport speed must be compensated by an increase in energy density in order to maintain a constant energy flux. Shoaling waves will also exhibit a reduction in wavelength while the frequency remains constant.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

Internal tides are generated as the surface tides move stratified water up and down sloping topography, which produces a wave in the ocean interior. So internal tides are internal waves at a tidal frequency. The other major source of internal waves is the wind which produces internal waves near the inertial frequency. When a small water parcel is displaced from its equilibrium position, it will return either downwards due to gravity or upwards due to buoyancy. The water parcel will overshoot its original equilibrium position and this disturbance will set off an internal gravity wave. Munk (1981) notes, "Gravity waves in the ocean's interior are as common as waves at the sea surface-perhaps even more so, for no one has ever reported an interior calm."

<span class="mw-page-title-main">Iribarren number</span> Dimensionless parameter

In fluid dynamics, the Iribarren number or Iribarren parameter – also known as the surf similarity parameter and breaker parameter – is a dimensionless parameter used to model several effects of (breaking) surface gravity waves on beaches and coastal structures. The parameter is named after the Spanish engineer Ramón Iribarren Cavanilles (1900–1967), who introduced it to describe the occurrence of wave breaking on sloping beaches.

Wind-wave dissipation or "swell dissipation" is process in which a wave generated via a weather system loses its mechanical energy transferred from the atmosphere via wind. Wind waves, as their name suggests, are generated by wind transferring energy from the atmosphere to the ocean's surface, capillary gravity waves play an essential role in this effect, "wind waves" or "swell" are also known as surface gravity waves.

Tides in marginal seas are tides affected by their location in semi-enclosed areas along the margins of continents and differ from tides in the open oceans. Tides are water level variations caused by the gravitational interaction between the Moon, the Sun and the Earth. The resulting tidal force is a secondary effect of gravity: it is the difference between the actual gravitational force and the centrifugal force. While the centrifugal force is constant across the Earth, the gravitational force is dependent on the distance between the two bodies and is therefore not constant across the Earth. The tidal force is thus the difference between these two forces on each location on the Earth.

The nonlinearity of surface gravity waves refers to their deviations from a sinusoidal shape. In the fields of physical oceanography and coastal engineering, the two categories of nonlinearity are skewness and asymmetry. Wave skewness and asymmetry occur when waves encounter an opposing current or a shallow area. As waves shoal in the nearshore zone, in addition to their wavelength and height changing, their asymmetry and skewness also change. Wave skewness and asymmetry are often implicated in ocean engineering and coastal engineering for the modelling of random sea states, in particular regarding the distribution of wave height, wavelength and crest length. For practical engineering purposes, it is important to know the probability of these wave characteristics in seas and oceans at a given place and time. This knowledge is crucial for the prediction of extreme waves, which are a danger for ships and offshore structures. Satellite altimeter Envisat RA-2 data shows geographically coherent skewness fields in the ocean and from the data has been concluded that large values of skewness occur primarily in regions of large significant wave height.

<span class="mw-page-title-main">Internal wave breaking</span> Fluid dynamics process driving mixing in the oceans

Internal wave breaking is a process during which internal gravity waves attain a large amplitude compared to their length scale, become nonlinearly unstable and finally break. This process is accompanied by turbulent dissipation and mixing. As internal gravity waves carry energy and momentum from the environment of their inception, breaking and subsequent turbulent mixing affects the fluid characteristics in locations of breaking. Consequently, internal wave breaking influences even the large scale flows and composition in both the ocean and the atmosphere. In the atmosphere, momentum deposition by internal wave breaking plays a key role in atmospheric phenomena such as the Quasi-Biennial Oscillation and the Brewer-Dobson Circulation. In the deep ocean, mixing induced by internal wave breaking is an important driver of the meridional overturning circulation. On smaller scales, breaking-induced mixing is important for sediment transport and for nutrient supply to the photic zone. Most breaking of oceanic internal waves occurs in continental shelves, well below the ocean surface, which makes it a difficult phenomenon to observe.

<span class="mw-page-title-main">Lofoten Vortex</span> Physical oceanographic feature

The Lofoten Vortex, also called Lofoten Basin Vortex or Lofoten Basin Eddy, is a permanent oceanic anticyclonic eddy, located in the northern part of the Norwegian Sea, off the coast of the Lofoten archipelago. It was documented for the first time in the 1970s.

References

  1. "AGU - American Geophysical Union". AGU.
  2. Arkhipenko, V.I.; Gusakov, E.Z.; Pisarev, V.A.; Simonchik, L.V. (June 2002). Dynamics of the Plasma Wave Breaking Phenomena (PDF). 29th EPS Conference on Plasma Phys. and Contr. Fusion. Montreux, Switzerland. Archived from the original (PDF) on 28 September 2011. Retrieved 5 November 2022.
  3. Sarpkaya, Turgut; Isaacson, Michael (1981). Mechanics of wave forces on offshore structures. Van Nostrand Reinhold. p. 277. ISBN   978-0-442-25402-5.
  4. Lighthill, M. J. (1978). Waves in fluids. Cambridge University Press. pp. 223–225 & 232–235. ISBN   0-521-29233-6. OCLC   2966533.