Slab suction is one of the four main forces that drive plate tectonics. It creates a force that pulls down plates as they are subducting and speeds up their movement, creating larger amounts of displacement.
It is because of these forces, slab pull, ridge push, mantle convection, and slab suction that the earth's crust is able to move and orient itself in various arrangements. This is how throughout the earth's history there has been the ability to create super continents where all of the land mass has converged into one (for example, Pangaea).
Slab suction occurs when a subducting slab drives flow in the lower mantle by exerting additional force down in the direction of the mantle's convection currents. This flow then exerts shear tractions on the base of nearby plates. This driving force is important when the slabs (or portions thereof) are not strongly attached to the rest of their respective tectonic plate. They cause both the subducting and overriding plate to move in the direction of the subduction zone. [1]
This force occurs between two colliding plates where one is subducting beneath the other. As one plate subducts, it sets up convection currents in the upper mantle that exert a net trenchward pull, and acts to suck both the plates together. [2]
Slab suction is weaker than slab pull, which is the strongest of the driving forces. When measuring the forces of these two mechanisms, slab pull in subducting plate boundaries for upper mantle slabs is 1.9 × 10^21 N.[ clarification needed ] In comparison slab suction in the upper and lower mantle totaled 1.6 × 10^21 N. [3]
Slab suction in coordination with slab pull are used to analyze the speeds of plates work.[ clarification needed ] When you combine the slab pull of the upper mantle slabs with the slab suction of lower mantle slabs you get a model showing that subducting plates move four times faster than non subducting plates. Computing the slab suction force can give us predictions of the plate velocities by using viscous flow driven by the slabs and adding it to the shear tractions the flow exerts of the base of the plates. [4] Due to the flow in the lower mantle causing slab suction, changes in viscosity will have a much different effect than how it would apply to the upper mantle. In the lower mantle if you have a decrease in viscosity the flow will become much more rapid and increase the effect of slab suction and if viscosity in the lower mantle increases the effects of slab suction will decrease.
Associated with the slab suction force is the idea of trench roll-back. As a slab of oceanic crust subducts into the mantle, the hinge of the plate (the point where the plate begins to subduct) tends to regress away from the trench. This occurs because there is effectively no force to hold the hinge in one location. [5]
Plate tectonics is a scientific theory describing the large-scale motion of the plates making up Earth's lithosphere since tectonic processes began on Earth between 3.3 and 3.5 billion years ago. The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. The geoscientific community accepted plate-tectonic theory after seafloor spreading was validated in the mid to late 1960s.
Oceanic trenches are topographic depressions of the seafloor, relatively narrow in width, but very long. These oceanographic features are the deepest parts of the ocean floor. Oceanic trenches are a distinctive morphological feature of convergent plate boundaries, along which lithospheric plates move towards each other at rates that vary from a few millimeters to over ten centimeters per year. A trench marks the position at which the flexed, subducting slab begins to descend beneath another lithospheric slab. Trenches are generally parallel to a volcanic island arc, and about 200 km (120 mi) from a volcanic arc. Oceanic trenches typically extend 3 to 4 km below the level of the surrounding oceanic floor. The greatest ocean depth measured is in the Challenger Deep of the Mariana Trench, at a depth of 11,034 m (36,201 ft) below sea level. Oceanic lithosphere moves into trenches at a global rate of about 3 km2/yr.
Subduction is a geological process in which the oceanic lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the heavier plate dives beneath the second plate and sinks into the mantle. A region where this process occurs is known as a subduction zone, and its surface expression is known as an arc-trench complex. The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with the average rate of convergence being approximately two to eight centimeters per year along most plate boundaries.
A convergent boundary is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.
Island arcs are long chains of active volcanoes with intense seismic activity found along convergent tectonic plate boundaries. Most island arcs originate on oceanic crust and have resulted from the descent of the lithosphere into the mantle along the subduction zone. They are the principal way by which continental growth is achieved.
Earth's mantle is a layer of silicate rock between the crust and the outer core. It has a mass of 4.01 × 1024 kg and thus makes up 67% of the mass of Earth. It has a thickness of 2,900 kilometres (1,800 mi) making up about 84% of Earth's volume. It is predominantly solid but, on geologic time scales, it behaves as a viscous fluid, sometimes described as having the consistency of caramel. Partial melting of the mantle at mid-ocean ridges produces oceanic crust, and partial melting of the mantle at subduction zones produces continental crust.
The Mendocino Triple Junction (MTJ) is the point where the Gorda plate, the North American plate, and the Pacific plate meet, in the Pacific Ocean near Cape Mendocino in northern California. This triple junction is the location of a change in the broad plate motions which dominate the west coast of North America, linking convergence of the northern Cascadia subduction zone and translation of the southern San Andreas Fault system. The Gorda plate is subducting, towards N50ºE, under the North American plate at 2.5 – 3 cm/yr, and is simultaneously converging obliquely against the Pacific plate at a rate of 5 cm/yr in the direction N115ºE. The accommodation of this plate configuration results in a transform boundary along the Mendocino Fracture Zone, and a divergent boundary at the Gorda Ridge.
Mantle convection is the very slow creeping motion of Earth's solid silicate mantle caused by convection currents carrying heat from the interior to the planet's surface.
Geodynamics is a subfield of geophysics dealing with dynamics of the Earth. It applies physics, chemistry and mathematics to the understanding of how mantle convection leads to plate tectonics and geologic phenomena such as seafloor spreading, mountain building, volcanoes, earthquakes, faulting and so on. It also attempts to probe the internal activity by measuring magnetic fields, gravity, and seismic waves, as well as the mineralogy of rocks and their isotopic composition. Methods of geodynamics are also applied to exploration of other planets.
Natural convection is a type of flow, of motion of a liquid such as water or a gas such as air, in which the fluid motion is not generated by any external source but by some parts of the fluid being heavier than other parts. In most cases this leads to natural circulation, the ability of a fluid in a system to circulate continuously, with gravity and possible changes in heat energy. The driving force for natural convection is gravity. For example if there is a layer of cold dense air on top of hotter less dense air, gravity pulls more strongly on the denser layer on top, so it falls while the hotter less dense air rises to take its place. This creates circulating flow: convection. As it relies on gravity, there is no convection in free-fall (inertial) environments, such as that of the orbiting International Space Station. Natural convection can occur when there are hot and cold regions of either air or water, because both water and air become less dense as they are heated. But, for example, in the world's oceans it also occurs due to salt water being heavier than fresh water, so a layer of salt water on top of a layer of fresher water will also cause convection.
Slab pull is that part of the motion of a tectonic plate caused by its subduction. In 1975 Forsyth and Uyeda used the inverse theory method to show that, of the many forces likely to be driving plate motion, slab pull was the strongest. Plate motion is partly driven by the weight of cold, dense plates sinking into the mantle at oceanic trenches. This force and slab suction account for almost all of the force driving plate tectonics. The ridge push at rifts contributes only 5 to 10%.
The back-arc region is the area behind a volcanic arc. In island volcanic arcs it consists of back-arc basins of oceanic crust with abyssal depths, which may be separated by remnant arcs, similar to island arcs. In continental arcs the back-arc region is part of continental platform, either dry land (subaerial) or forming shallow marine basins.
In geology, a slab is the portion of a tectonic plate that is being subducted.
Crustal recycling is a tectonic process by which surface material from the lithosphere is recycled into the mantle by subduction erosion or delamination. The subducting slabs carry volatile compounds and water into the mantle, as well as crustal material with an isotopic signature different from that of primitive mantle. Identification of this crustal signature in mantle-derived rocks is proof of crustal recycling.
The evolution of tectonophysics is closely linked to the history of the continental drift and plate tectonics hypotheses. The continental drift/ Airy-Heiskanen isostasy hypothesis had many flaws and scarce data. The fixist/ Pratt-Hayford isostasy, the contracting Earth and the expanding Earth concepts had many flaws as well.
The discovery of extrasolar Earth-sized planets has encouraged research into their potential for habitability. One of the generally agreed requirements for a life-sustaining planet is a mobile, fractured lithosphere cyclically recycled into a vigorously convecting mantle, in a process commonly known as plate tectonics. Plate tectonics provide a means of geochemical regulation of atmospheric particulates, as well as removal of carbon from the atmosphere. This prevents a “runaway greenhouse” effect that can result in inhospitable surface temperatures and vaporization of liquid surface water. Planetary scientists have not reached a consensus on whether Earth-like exoplanets have plate tectonics, but it is widely thought that the likelihood of plate tectonics on an Earth-like exoplanet is a function of planetary radius, initial temperature upon coalescence, insolation, and presence or absence of liquid-phase surface water.
Flat slab subduction is characterized by a low subduction angle beyond the seismogenic layer and a resumption of normal subduction far from the trench. A slab refers to the subducting lower plate. Although, some would characterize flat slab subduction as any shallowly dipping lower plate as in western Mexico. Flat slab subduction is associated with the pinching out of the asthenosphere, an inland migration of arc magmatism, and an eventual cessation of arc magmatism. The coupling of the flat slab to the upper plate is thought to change the style of deformation occurring on the upper plate's surface and form basement-cored uplifts like the Rocky Mountains. The flat slab also may hydrate the lower continental lithosphere and be involved in the formation of economically important ore deposits. During the subduction, a flat slab itself may be deformed, or buckling, causing sedimentary hiatus in marine sediments on the slab. The failure of a flat slab is associated with ignimbritic volcanism and the reverse migration of arc volcanism. Multiple working hypotheses about the cause of flat slabs are subduction of thick, buoyant oceanic crust (15–20 km) and trench rollback accompanying a rapidly overriding upper plate and enhanced trench suction. The west coast of South America has two of the largest flat slab subduction zones. Flat slab subduction is occurring at 10% of subduction zones.
Ridge push or sliding plate force is a proposed driving force for plate motion in plate tectonics that occurs at mid-ocean ridges as the result of the rigid lithosphere sliding down the hot, raised asthenosphere below mid-ocean ridges. Although it is called ridge push, the term is somewhat misleading; it is actually a body force that acts throughout an ocean plate, not just at the ridge, as a result of gravitational pull. The name comes from earlier models of plate tectonics in which ridge push was primarily ascribed to upwelling magma at mid-ocean ridges pushing or wedging the plates apart.
Carolina Raquel Lithgow-Bertelloni is a geophysicist known for her research on the role of subsurface processes in shaping the Earth. She was elected a fellow of the American Geophysical Union in 2021.