Oceanic zone

Last updated


It is the open sea region beyond the edge of the continental shelf and includes 65% of the ocean's completely open water. The oceanic zone has a wide array of undersea terrain, including trenches that are often deeper than Mount Everest is tall, as well as deep-sea volcanoes and basins. While it is often difficult for life to sustain itself in this environment, many species have adapted and thrive in the oceanic zone.

Contents

The open ocean is vertically divided into four zones: the sunlight zone, twilight zone, midnight zone, and abyssal zone.

Sub zones

The Mesopelagic (disphotic) zone, which is where only small amounts of light penetrate, lies below the Epipelagic zone. This zone is often referred to as the "Twilight Zone" due to its scarce amount of light. Temperatures in the Mesopelagic zone range from 5 to 4 °C (41 to 39 °F). The pressure is higher here, it can be up to 10,100 kilopascals (1,460 psi) and increases with depth. [1]

54% of the ocean lies in the Bathypelagic (aphotic) zone into which no light penetrates. This is also called the midnight zone and the deep ocean. Due to the complete lack of sunlight, photosynthesis cannot occur and the only light source is bioluminescence. Water pressure is very intense and the temperatures are near freezing (range 0 to 6 °C (32 to 43 °F)).

Marine life

Oceanographers have divided the ocean into zones based on how far light reaches. All of the light zones can be found in the oceanic zone. The epipelagic zone is the one closest to the surface and is the best lit. It extends to 100 meters and contains both phytoplankton and zooplankton that can support larger organisms like marine mammals and some types of fish. Past 100 meters, not enough light penetrates the water to support life, and no plant life exists. [1]

There are creatures, however, which thrive around hydrothermal vents, or geysers located on the ocean floor that expel superheated water that is rich in minerals. [2] These organisms feed off of chemosynthetic bacteria, which use the superheated water and chemicals from the hydrothermal vents to create energy in place of photosynthesis. The existence of these bacteria allow creatures like squids, hatchet fish, octopuses, tube worms, giant clams, spider crabs and other organisms to survive. [3]

The oceanic zone is the deep ocean (deep blue) that lies beyond the relative shallows of the continental shelves (light blue) World map of bathymetric data - GEBCO 2014.jpg
The oceanic zone is the deep ocean (deep blue) that lies beyond the relative shallows of the continental shelves (light blue)
External videos
Nuvola apps kaboodle.svg Our Planet: High Seas
– David Attenborough, full episode, Netflix

Due to the total darkness in the zones past the epipelagic zone, many organisms that survive in the deep oceans do not have eyes, and other organisms make their own light with bioluminescence. Often the light is blue-green in color because many marine organisms are sensitive to blue light. Two chemicals, luciferin, and luciferase that react with one another to create a soft glow. The process of creating bioluminescence is very similar to what happens when a glow stick is broken. Deep-sea organisms use bioluminescence for everything from luring prey to navigation. [3]

Animals such as fish, whales, and sharks are found in the oceanic zone.

Related Research Articles

The photic zone, euphotic zone, epipelagic zone, or sunlight zone is the uppermost layer of a body of water that receives sunlight, allowing phytoplankton to perform photosynthesis. It undergoes a series of physical, chemical, and biological processes that supply nutrients into the upper water column. The photic zone is home to the majority of aquatic life due to the activity of the phytoplankton. The thicknesses of the photic and euphotic zones vary with the intensity of sunlight as a function of season and latitude and with the degree of water turbidity. The bottommost, or aphotic, zone is the region of perpetual darkness that lies beneath the photic zone and includes most of the ocean waters.

<span class="mw-page-title-main">Deep-sea fish</span> Fauna found in deep-sea areas

Deep-sea fish are fish that live in the darkness below the sunlit surface waters, that is below the epipelagic or photic zone of the sea. The lanternfish is, by far, the most common deep-sea fish. Other deep-sea fishes include the flashlight fish, cookiecutter shark, bristlemouths, anglerfish, viperfish, and some species of eelpout.

The aphotic zone is the portion of a lake or ocean where there is little or no sunlight. It is formally defined as the depths beyond which less than 1 percent of sunlight penetrates. Above the aphotic zone is the photic zone, which consists of the euphotic zone and the disphotic zone. The euphotic zone is the layer of water in which there is enough light for net photosynthesis to occur. The disphotic zone, also known as the twilight zone, is the layer of water with enough light for predators to see but not enough for the rate of photosynthesis to be greater than the rate of respiration.

<span class="mw-page-title-main">Bioluminescence</span> Emission of light by a living organism

Bioluminescence is the production and emission of light by living organisms. It is a form of chemiluminescence. Bioluminescence occurs widely in marine vertebrates and invertebrates, as well as in some fungi, microorganisms including some bioluminescent bacteria, and terrestrial arthropods such as fireflies. In some animals, the light is bacteriogenic, produced by symbiotic bacteria such as those from the genus Vibrio; in others, it is autogenic, produced by the animals themselves.

<span class="mw-page-title-main">Hydrothermal vent</span> Fissure in a planets surface from which heated water emits

Hydrothermal vents are fissures on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspots. The dispersal of hydrothermal fluids throughout the global ocean at active vent sites creates hydrothermal plumes. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.

The pelagic zone consists of the water column of the open ocean and can be further divided into regions by depth. The word pelagic is derived from Ancient Greek πέλαγος (pélagos) 'open sea'. The pelagic zone can be thought of as an imaginary cylinder or water column between the surface of the sea and the bottom. Conditions in the water column change with depth: pressure increases; temperature and light decrease; salinity, oxygen, micronutrients all change. Somewhat analogous to stratification in the Earth's atmosphere, but depending on how deep the water is, the water column can be divided vertically into up to five different layers.

The mesopelagiczone, also known as the middle pelagic or twilight zone, is the part of the pelagic zone that lies between the photic epipelagic and the aphotic bathypelagic zones. It is defined by light, and begins at the depth where only 1% of incident light reaches and ends where there is no light; the depths of this zone are between approximately 200 to 1,000 meters below the ocean surface.

The bathypelagic zone or bathyal zone is the part of the open ocean that extends from a depth of 1,000 to 4,000 m below the ocean surface. It lies between the mesopelagic above and the abyssopelagic below. The bathypelagic is also known as the midnight zone because of the lack of sunlight; this feature does not allow for photosynthesis-driven primary production, preventing growth of phytoplankton or aquatic plants. Although larger by volume than the photic zone, human knowledge of the bathypelagic zone remains limited by ability to explore the deep ocean.

<span class="mw-page-title-main">Benthic zone</span> Ecological region at the lowest level of a body of water

The benthic zone is the ecological region at the lowest level of a body of water such as an ocean, lake, or stream, including the sediment surface and some sub-surface layers. The name comes from ancient Greek, βένθος (bénthos), meaning "the depths." Organisms living in this zone are called benthos and include microorganisms as well as larger invertebrates, such as crustaceans and polychaetes. Organisms here generally live in close relationship with the substrate and many are permanently attached to the bottom. The benthic boundary layer, which includes the bottom layer of water and the uppermost layer of sediment directly influenced by the overlying water, is an integral part of the benthic zone, as it greatly influences the biological activity that takes place there. Examples of contact soil layers include sand bottoms, rocky outcrops, coral, and bay mud.

<span class="mw-page-title-main">Abyssal plain</span> Flat area on the deep ocean floor

An abyssal plain is an underwater plain on the deep ocean floor, usually found at depths between 3,000 and 6,000 metres. Lying generally between the foot of a continental rise and a mid-ocean ridge, abyssal plains cover more than 50% of the Earth's surface. They are among the flattest, smoothest, and least explored regions on Earth. Abyssal plains are key geologic elements of oceanic basins.

The abyssal zone or abyssopelagic zone is a layer of the pelagic zone of the ocean. The word abyss comes from the Greek word ἄβυσσος (ábussos), meaning "bottomless". At depths of 4,000–6,000 m (13,000–20,000 ft), this zone remains in perpetual darkness. It covers 83% of the total area of the ocean and 60% of Earth's surface. The abyssal zone has temperatures around 2–3 °C (36–37 °F) through the large majority of its mass. The water pressure can reach up to 76 MPa.

<span class="mw-page-title-main">Pelagic fish</span> Fish in the pelagic zone of ocean waters

Pelagic fish live in the pelagic zone of ocean or lake waters—being neither close to the bottom nor near the shore—in contrast with demersal fish that live on or near the bottom, and reef fish that are associated with coral reefs.

<span class="mw-page-title-main">Deep sea</span> Lowest layer in the ocean

The deep sea is broadly defined as the ocean depth where light begins to fade, at an approximate depth of 200 m (660 ft) or the point of transition from continental shelves to continental slopes. Conditions within the deep sea are a combination of low temperatures, darkness, and high pressure. The deep sea is considered the least explored Earth biome as the extreme conditions make the environment difficult to access and explore.

<span class="mw-page-title-main">Microbial mat</span> Multi-layered sheet of microorganisms

A microbial mat is a multi-layered sheet of microorganisms, mainly bacteria and archaea, or bacteria alone. Microbial mats grow at interfaces between different types of material, mostly on submerged or moist surfaces, but a few survive in deserts. A few are found as endosymbionts of animals.

<span class="mw-page-title-main">Deep-sea community</span> Groups of organisms living deep below the sea surface, sharing a habitat

A deep-sea community is any community of organisms associated by a shared habitat in the deep sea. Deep sea communities remain largely unexplored, due to the technological and logistical challenges and expense involved in visiting this remote biome. Because of the unique challenges, it was long believed that little life existed in this hostile environment. Since the 19th century however, research has demonstrated that significant biodiversity exists in the deep sea.

<span class="mw-page-title-main">Deep scattering layer</span> Layer of small animals in the ocean

The deep scattering layer, sometimes referred to as the sound scattering layer, is a layer in the ocean consisting of a variety of marine animals. It was discovered through the use of sonar, as ships found a layer that scattered the sound and was thus sometimes mistaken for the seabed. For this reason it is sometimes called the false bottom or phantom bottom. It can be seen to rise and fall each day in keeping with diel vertical migration.

<i>Cyclothone</i> Genus of fishes

Cyclothone is a genus containing 13 extant species of bioluminescent fish, commonly known as 'bristlemouths' or 'bristlefishes' due to their shared characteristic of sharp, bristle-like teeth. These fishes typically grow to around 1-3 inches, though some can be larger. They are most commonly found in the mesopelagic zone of the ocean, mostly at depths of over 300 meters, and many species have bioluminescence.

<i>Stygiomedusa</i> Species of jellyfish

Stygiomedusa gigantea, commonly known as the giant phantom jelly, is the only species in the monotypic genus of deep sea jellyfish, Stygiomedusa. It is in the Ulmaridae family. With only around 110 sightings in 110 years, it is a jellyfish that is rarely seen, but believed to be widespread throughout the world, with the exception of the Arctic Ocean.

<span class="mw-page-title-main">Marine habitat</span> Habitat that supports marine life

A marine habitat is a habitat that supports marine life. Marine life depends in some way on the saltwater that is in the sea. A habitat is an ecological or environmental area inhabited by one or more living species. The marine environment supports many kinds of these habitats.

<i>Neoscopelus macrolepidotus</i> Species of fish

Neoscopelus macrolepidotus, also known as a large-scaled lantern fish, is a species of small mesopelagic or bathypelagic fish of the family Neoscopelidae, which contains six species total along three genera. The family Neoscopelidae is one of the two families of the order Myctophiformes. Neoscopelidae can be classified by the presence of an adipose fin. The presence of photophores, or light-producing organs, further classify the species into the genus Neoscopelus. N. macrolepidotus tends to be mesopelagic until the individuals become large adults, which is when they settle down to the bathypelagic zone.

References

  1. 1 2 "NatureWorks." New Hampshire Public Television - Engage. Connect. Celebrate. Web. 27 Oct. 2009
  2. The University of Delaware Marine Graduate School. "Hydrothermal Vents." Voyage to the Deep. The University of Delaware, 2000. Web. 27 Oct. 2009.
  3. 1 2 Knight, J.D. (1997) Sea and Sky 25 Oct. 2009.