Last updated
Graph showing a tropical ocean thermocline (depth vs. temperature). Note the rapid change between 100 and 1000 meters. The temperature is nearly constant after 1500 meters depth. THERMOCLINE.png
Graph showing a tropical ocean thermocline (depth vs. temperature). Note the rapid change between 100 and 1000 meters. The temperature is nearly constant after 1500 meters depth.

A thermocline (also known as the thermal layer or the metalimnion in lakes) is a thin but distinct layer in a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) in which temperature changes more drastically with depth than it does in the layers above or below. In the ocean, the thermocline divides the upper mixed layer from the calm deep water below.


Depending largely on season, latitude, and turbulent mixing by wind, thermoclines may be a semi-permanent feature of the body of water in which they occur, or they may form temporarily in response to phenomena such as the radiative heating/cooling of surface water during the day/night. Factors that affect the depth and thickness of a thermocline include seasonal weather variations, latitude, and local environmental conditions, such as tides and currents.


Graph of different thermoclines (depth versus temperature) based on seasons and latitude ThermoclineSeasonDepth.png
Graph of different thermoclines (depth versus temperature) based on seasons and latitude
Two moon jellyfish disturbing a thermocline in the top water layer of Gullmarn fjord, Sweden Moon jellyfishes disturbing the top water layer of Gullmarn fjord 1.jpg
Two moon jellyfish disturbing a thermocline in the top water layer of Gullmarn fjord, Sweden

Most of the heat energy of the sunlight that strikes the Earth is absorbed in the first few centimeters at the ocean's surface, which heats during the day and cools at night as heat energy is lost to space by radiation. Waves mix the water near the surface layer and distribute heat to deeper water such that the temperature may be relatively uniform in the upper 100 metres (330 ft), depending on wave strength and the existence of surface turbulence caused by currents. Below this mixed layer, the temperature remains relatively stable over day/night cycles. The temperature of the deep ocean drops gradually with depth. As saline water does not freeze until it reaches −2.3 °C (27.9 °F) (colder as depth and pressure increase) the temperature well below the surface is usually not far from zero degrees. [1]

The thermocline varies in depth. It is semi-permanent in the tropics, variable in temperate regions and shallow to nonexistent in the polar regions, where the water column is cold from the surface to the bottom. [2] A layer of sea ice will act as an insulation blanket. The first accurate global measurements were made during the oceanographic expedition of HMS Challenger. [3]

In the open ocean, the thermocline is characterized by a negative sound speed gradient, making the thermocline important in submarine warfare because it can reflect active sonar and other acoustic signals. This stems from a discontinuity in the acoustic impedance of water created by the sudden change in density.

In scuba diving, a thermocline where water drops in temperature by a few degrees Celsius quite suddenly can sometimes be observed between two bodies of water, for example where colder upwelling water runs into a surface layer of warmer water. It gives the water an appearance of wrinkled glass, the kind often used in bathroom windows to obscure the view, and is caused by the altered refractive index of the cold or warm water column. These same schlieren can be observed when hot air rises off the tarmac at airports or desert roads and is the cause of mirages.

Other water bodies

Thermoclines can also be observed in lakes. In colder climates, this leads to a phenomenon called stratification. During the summer, warm water, which is less dense, will sit on top of colder, denser, deeper water with a thermocline separating them. The warm layer is called the epilimnion and the cold layer is called the hypolimnion. Because the warm water is exposed to the sun during the day, a stable system exists and very little mixing of warm water and cold water occurs, particularly in calm weather.

Lakes are stratified into three separate layers: the epilimnion (I), metalimnion (II), and (III) hypolimnion.
The scales are used to associate each section of the stratification to their corresponding depths and temperatures. The arrow is used to show the movement of wind over the surface of the water, which initiates the turnover in the epilimnion and hypolimnion. Lake Stratification (11).svg
Lakes are stratified into three separate layers: the epilimnion (I), metalimnion (II), and (III) hypolimnion.
The scales are used to associate each section of the stratification to their corresponding depths and temperatures. The arrow is used to show the movement of wind over the surface of the water, which initiates the turnover in the epilimnion and hypolimnion.

One result of this stability is that as the summer wears on, there is less and less oxygen below the thermocline as the water below the thermocline never circulates to the surface and organisms in the water deplete the available oxygen. As winter approaches, the temperature of the surface water will drop as nighttime cooling dominates heat transfer. A point is reached where the density of the cooling surface water becomes greater than the density of the deep water and overturning begins as the dense surface water moves down under the influence of gravity. This process is aided by wind or any other process (currents for example) that agitates the water. This effect also occurs in Arctic and Antarctic waters, bringing water to the surface which, although low in oxygen, is higher in nutrients than the original surface water. This enriching of surface nutrients may produce blooms of phytoplankton, making these areas productive.

As the temperature continues to drop, the water on the surface may get cold enough to freeze and the lake/ocean begins to ice over. A new thermocline develops where the densest water (4 °C (39 °F)) sinks to the bottom, and the less dense water (water that is approaching the freezing point) rises to the top. Once this new stratification establishes itself, it lasts until the water warms enough for the 'spring turnover,' which occurs after the ice melts and the surface water temperature rises to 4 °C. During this transition, a thermal bar may develop.

Waves can occur on the thermocline, causing the depth of the thermocline as measured at a single location to oscillate (usually as a form of seiche). Alternately, the waves may be induced by flow over a raised bottom, producing a thermocline wave which does not change with time, but varies in depth as one moves into or against the flow.


The lower atmosphere also typically contains a boundary between two distinct regions (the troposphere and stratosphere), but that boundary (the tropopause) displays quite different behavior. However, atmospheric thermoclines, or inversions, can occur, e.g. as nighttime cooling of the Earth's surface produces cold, dense, often calm air adjacent to the ground. The coldest air is adjacent to the ground, with the air temperature increasing with height. At the top of this nighttime boundary layer (which may be only a hundred meters thick), the normal adiabatic temperature profile of the troposphere (i.e. temperature decreasing with altitude) is again observed. The thermocline or inversion layer occurs where the temperature profile changes from positive to negative with increasing height. The stability of the night-time inversion is usually destroyed soon after sunrise as the sun's energy warms the ground, which in turn warms the air in the inversion layer. The warmer, less dense air then rises, thereby destroying the stability that characterizes the nightly inversion.

This phenomenon was first applied to the field of noise pollution study in the 1960s, contributing to the design of urban highways and noise barriers. [4]

See also

Related Research Articles

Troposphere Lowest layer of Earths atmosphere

The troposphere is the first and lowest layer of the atmosphere of the Earth, and contains 75% of the total mass of the planetary atmosphere, 99% of the total mass of water vapour and aerosols, and is where most weather phenomena occur. From the planetary surface of the Earth, the average height of the troposphere is 18 km in the tropics; 17 km in the middle latitudes; and 6 km in the high latitudes of the polar regions in winter; thus the average height of the troposphere is 13 km.

Stratosphere Layer of the atmosphere above the troposphere

The stratosphere is the second layer of the atmosphere of the Earth, located above the troposphere and below the mesosphere. The stratosphere is an atmospheric layer composed of stratified temperature layers, with the warm layers of air high in the sky and the cool layers of air in the low sky, close to the planetary surface of the Earth. The increase of temperature with altitude is a result of the absorption of the Sun's ultraviolet (UV) radiation by the ozone layer. The temperature inversion is in contrast to the troposphere, near the Earth's surface, where temperature decreases with altitude.

Fog Atmospheric phenomenon

Fog is a visible aerosol consisting of tiny water droplets or ice crystals suspended in the air at or near the Earth's surface. Fog can be considered a type of low-lying cloud usually resembling stratus, and is heavily influenced by nearby bodies of water, topography, and wind conditions. In turn, fog affects many human activities, such as shipping, travel, and warfare.

Thermohaline circulation A part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes

Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content, factors which together determine the density of sea water. Wind-driven surface currents travel polewards from the equatorial Atlantic Ocean, cooling en route, and eventually sinking at high latitudes. This dense water then flows into the ocean basins. While the bulk of it upwells in the Southern Ocean, the oldest waters upwell in the North Pacific. Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system. The water in these circuits transport both energy and mass around the globe. As such, the state of the circulation has a large impact on the climate of the Earth.

Diving physics are the aspects of physics which directly affect the underwater diver and which explain the effects that divers and their equipment are subject to underwater which differ from the normal human experience out of water.

Sea surface temperature Water temperature close to the oceans surface

Sea surface temperature (SST), or ocean surface temperature, is the water temperature close to the ocean's surface. The exact meaning of surface varies according to the measurement method used, but it is between 1 millimetre (0.04 in) and 20 metres (70 ft) below the sea surface. Air masses in the Earth's atmosphere are highly modified by sea surface temperatures within a short distance of the shore. Localized areas of heavy snow can form in bands downwind of warm water bodies within an otherwise cold air mass. Warm sea surface temperatures are known to be a cause of tropical cyclogenesis over the Earth's oceans. Tropical cyclones can also cause a cool wake, due to turbulent mixing of the upper 30 metres (100 ft) of the ocean. SST changes diurnally, like the air above it, but to a lesser degree. There is less SST variation on breezy days than on calm days. In addition, ocean currents such as the Atlantic Multidecadal Oscillation (AMO), can affect SST's on multi-decadal time scales, a major impact results from the global thermohaline circulation, which affects average SST significantly throughout most of the world's oceans.

Internal wave Type of gravity waves that oscillate within a fluid medium

Internal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance, the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface. If the density changes continuously, the waves can propagate vertically as well as horizontally through the fluid.

In oceanography, a halocline is a cline, a subtype of chemocline caused by a strong, vertical salinity gradient within a body of water. Because salinity affects the density of seawater, it can play a role in its vertical stratification. Increasing salinity by one kg/m3 results in an increase of seawater density of around 0.7 kg/m3.

A pycnocline is the cline or layer where the density gradient is greatest within a body of water. An ocean current is generated by the forces such as breaking waves, temperature and salinity differences, wind, Coriolis effect, and tides caused by the gravitational pull of celestial bodies. In addition, the physical properties in a pycnocline driven by density gradients also affect the flows and vertical profiles in the ocean. These changes can be connected to the transport of heat, salt, and nutrients through the ocean, and the pycnocline diffusion controls upwelling.

Lake stratification Separation of water in a lake into distinct layers

Lake stratification is the tendency of lakes to form separate and distinct thermal layers during warm weather. Typically stratified lakes show three distinct layers, the Epilimnion comprising the top warm layer, the thermocline : the middle layer, which may change depth throughout the day, and the colder Hypolimnion extending to the floor of the lake.

Stratification is defined as the separation of water in layers based on a specific quantity. Two main types of stratification of water are uniform and layered stratification. Layered stratification occurs in all of the ocean basins. The stratified layers act as a barrier to the mixing of water, which can impact the exchange of heat, carbon, oxygen and other nutrients. Due to upwelling and downwelling, which are both wind-driven, mixing of different layers can occur by means of the rise of cold nutrient-rich and warm water, respectively. Generally, the layers are based on the density of water. Intuitively, heavier, and hence denser, water is located below the lighter water, representing a stable stratification. An example of a layer in the ocean is the pycnocline, which is defined as a layer in the ocean where the change in density is relatively large compared to the other layers in the ocean. The thickness of the thermocline is not constant everywhere, but depends on a variety of variables. Between 1960 and 2018, upper ocean stratification has increased between 0.7-1.2% per decade. An increase in stratification means that the differences in density of the layers in the oceans increase, leading to for example larger mixing barriers.

Mixed layer Layer in which active turbulence has homogenized some range of depths

The oceanic or limnological mixed layer is a layer in which active turbulence has homogenized some range of depths. The surface mixed layer is a layer where this turbulence is generated by winds, surface heat fluxes, or processes such as evaporation or sea ice formation which result in an increase in salinity. The atmospheric mixed layer is a zone having nearly constant potential temperature and specific humidity with height. The depth of the atmospheric mixed layer is known as the mixing height. Turbulence typically plays a role in the formation of fluid mixed layers.

A dimictic lake is a body of freshwater whose difference in temperature between surface and bottom layers becomes negligible twice per year, allowing all strata of the lake's water to circulate vertically. All dimictic lakes are also considered holomictic, a category which includes all lakes which mix one or more times per year. During winter, dimictic lakes are covered by a layer of ice, creating a cold layer at the surface, a slightly warmer layer beneath the ice, and a still-warmer unfrozen bottom layer, while during summer, the same temperature-derived density differences separate the warm surface waters, from the colder bottom waters. In the spring and fall, these temperature differences briefly disappear, and the body of water overturns and circulates from top to bottom. Such lakes are common in mid-latitude regions with temperate climates.

Atmospheric instability Condition where the Earths atmosphere is generally considered to be unstable

Atmospheric instability is a condition where the Earth's atmosphere is generally considered to be unstable and as a result the weather is subjected to a high degree of variability through distance and time. Atmospheric stability is a measure of the atmosphere's tendency to discourage or deter vertical motion, and vertical motion is directly correlated to different types of weather systems and their severity. In unstable conditions, a lifted thing, such as a parcel of air will be warmer than the surrounding air at altitude. Because it is warmer, it is less dense and is prone to further ascent.

Ocean dynamics define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean, and deep ocean.

Geophysical fluid dynamics Dynamics of naturally occurring flows

Geophysical fluid dynamics, in its broadest meaning, refers to the fluid dynamics of naturally occurring flows, such as lava flows, oceans, and planetary atmospheres, on Earth and other planets.

Barrier layer (oceanography) Layer of water separating the well-mixed surface layer from the thermocline

The Barrier layer in the ocean is a layer of water separating the well-mixed surface layer from the thermocline.

Alpine planetary boundary layer

The alpine planetary boundary layer is the planetary boundary layer (PBL) associated with mountainous regions. Due to its high spatial and temporal variability, its behavior is more complex than over a flat terrain. The fast changing local wind system directly linked to topography and the variable land cover that goes from snow to vegetation have a significant effect on the growth of the PBL and make it much harder to predict.

Stable and unstable stratification

Stable stratification of fluids occurs when each layer is less dense than the one below it. Unstable stratification is when each layer is denser than the one below it.

Open ocean convection is a process in which the mesoscale ocean circulation and large, strong winds mix layers of water at different depths. Fresher water lying over the saltier or warmer over the colder leads to the stratification of water, or its separation into layers. Strong winds cause evaporation, so the ocean surface cools, weakening the stratification. As a result, the surface waters are overturned and sink while the "warmer" waters rise to the surface, starting the process of convection. This process has a crucial role in the formation of both bottom and intermediate water and in the large-scale thermohaline circulation, which largely determines global climate. It is also an important phenomena that controls the intensity of the Atlantic Meridional Overturning Circulation (AMOC).


  1. "Temperature of Ocean Water". UCAR. Archived from the original on 2010-03-27. Retrieved 2019-12-27.
  2. "What is a thermocline?". Retrieved 2021-10-09.
  3. Aitken, Frédéric; Foulc, Jean-Numa (2019). From deep sea to laboratory. 2 : Discovering H.M.S. Challenger's physical measurements relating to ocean circulation. London, UK. ISBN   9781786303752.
  4. Hogan, C. Michael (September 1973). "Analysis of highway noise". Water, Air, & Soil Pollution. 2 (3): 387–392. Bibcode:1973WASP....2..387H. doi:10.1007/BF00159677. S2CID   109914430.