A noise barrier (also called a soundwall, noise wall, sound berm, sound barrier, or acoustical barrier) is an exterior structure designed to protect inhabitants of sensitive land use areas from noise pollution. Noise barriers are the most effective method of mitigating roadway, railway, and industrial noise sources – other than cessation of the source activity or use of source controls.
In the case of surface transportation noise, other methods of reducing the source noise intensity include encouraging the use of hybrid and electric vehicles, improving automobile aerodynamics and tire design, and choosing low-noise paving material. Extensive use of noise barriers began in the United States after noise regulations were introduced in the early 1970s.
Noise barriers have been built in the United States since the mid-twentieth century, when vehicular traffic burgeoned. I-680 in Milpitas, California was the first noise barrier. [1] In the late 1960s, analytic acoustical technology emerged to mathematically evaluate the efficacy of a noise barrier design adjacent to a specific roadway. By the 1990s, noise barriers that included use of transparent materials were being designed in Denmark and other western European countries. [2]
The best of these early computer models considered the effects of roadway geometry, topography, vehicle volumes, vehicle speeds, truck mix, road surface type, and micro-meteorology. Several U.S. research groups developed variations of the computer modeling techniques: Caltrans Headquarters in Sacramento, California; the ESL Inc. group in Sunnyvale, California; the Bolt, Beranek and Newman [3] group in Cambridge, Massachusetts, and a research team at the University of Florida. Possibly the earliest published work that scientifically designed a specific noise barrier was the study for the Foothill Expressway in Los Altos, California. [4]
Numerous case studies across the U.S. soon addressed dozens of different existing and planned highways. Most were commissioned by state highway departments and conducted by one of the four research groups mentioned above. The U.S. National Environmental Policy Act, enacted in 1970, effectively mandated the quantitative analysis of noise pollution from every Federal-Aid Highway Act Project in the country, propelling noise barrier model development and application. With passage of the Noise Control Act of 1972, [5] demand for noise barrier design soared from a host of noise regulation spinoff.
By the late 1970s, more than a dozen research groups in the U.S. were applying similar computer modeling technology and addressing at least 200 different locations for noise barriers each year. As of 2006 [update] , this technology is considered a standard in the evaluation of noise pollution from highways. The nature and accuracy of the computer models used is nearly identical to the original 1970s versions of the technology.
Small and purposeful gaps exist in most noise barriers to allow firefighters to access nearby fire hydrants and pull through fire hoses, which are usually denoted by a sign indicating the nearest cross street, and a pictogram of a fire hydrant, though some hydrant gaps channel the hoses through small culvert channels beneath the wall.
The acoustical science of noise barrier design is based upon treating an airway or railway as a line source.[ dubious – discuss ] The theory is based upon blockage of sound ray travel toward a particular receptor; however, diffraction of sound must be addressed. Sound waves bend (downward) when they pass an edge, such as the apex of a noise barrier. Barriers that block line of sight of a highway or other source will therefore block more sound. [6] Further complicating matters is the phenomenon of refraction, the bending of sound rays in the presence of an inhomogeneous atmosphere. Wind shear and thermocline produce such inhomogeneities. The sound sources modeled must include engine noise, tire noise, and aerodynamic noise, all of which vary by vehicle type and speed.
The noise barrier may be constructed on private land, on a public right-of-way, or on other public land. Because sound levels are measured using a logarithmic scale, a reduction of nine decibels is equivalent to elimination of approximately 86 percent of the unwanted sound power.
Several different materials may be used for sound barriers, including masonry, earthwork (such as earth berm), steel, concrete, wood, plastics, insulating wool, or composites. [7] Walls that are made of absorptive material mitigate sound differently than hard surfaces. [8] It is also possible to make noise barriers with active materials such as solar photovoltaic panels to generate electricity while also reducing traffic noise. [9] [10] [11]
A wall with porous surface material and sound-dampening content material can be absorptive where little or no noise is reflected back towards the source or elsewhere. Hard surfaces such as masonry or concrete are considered to be reflective where most of the noise is reflected back towards the noise source and beyond. [12]
Noise barriers can be effective tools for noise pollution abatement, but certain locations and topographies are not suitable for use of noise barriers. Cost and aesthetics also play a role in the choice of noise barriers. In some cases, a roadway is surrounded by a noise abatement structure or dug into a tunnel using the cut-and-cover method.
Potential disadvantages of noise barriers include:
Roadside noise barriers have been shown to reduce the near-road air pollution concentration levels. Within 15–50 m from the roadside, air pollution concentration levels at the lee side of the noise barriers may be reduced by up to 50% compared to open road values. [13]
Noise barriers force the pollution plumes coming from the road to move up and over the barrier creating the effect of an elevated source and enhancing vertical dispersion of the plume. The deceleration and the deflection of the initial flow by the noise barrier force the plume to disperse horizontally. A highly turbulent shear zone characterized by slow velocities and a re-circulation cavity is created in the lee of the barrier which further enhances the dispersion; this mixes ambient air with the pollutants downwind behind the barrier. [14]
Noise pollution, or sound pollution, is the propagation of noise or sound with potential harmful effects on humans and animals. The source of outdoor noise worldwide is mainly caused by machines, transport and propagation systems. Poor urban planning may give rise to noise disintegration or pollution, side-by-side industrial and residential buildings can result in noise pollution in the residential areas. Some of the main sources of noise in residential areas include loud music, transportation, lawn care maintenance, construction, electrical generators, wind turbines, explosions and people.
A road surface or pavement is the durable surface material laid down on an area intended to sustain vehicular or foot traffic, such as a road or walkway. In the past, gravel road surfaces, macadam, hoggin, cobblestone and granite setts were extensively used, but these have mostly been replaced by asphalt or concrete laid on a compacted base course. Asphalt mixtures have been used in pavement construction since the beginning of the 20th century and are of two types: metalled (hard-surfaced) and unmetalled roads. Metalled roadways are made to sustain vehicular load and so are usually made on frequently used roads. Unmetalled roads, also known as gravel roads or dirt roads, are rough and can sustain less weight. Road surfaces are frequently marked to guide traffic.
Acoustical engineering is the branch of engineering dealing with sound and vibration. It includes the application of acoustics, the science of sound and vibration, in technology. Acoustical engineers are typically concerned with the design, analysis and control of sound.
An anechoic chamber is a room designed to stop reflections or echoes of either sound or electromagnetic waves. They are also often isolated from energy entering from their surroundings. This combination means that a person or detector exclusively hears direct sounds, in effect simulating being outside in a free field.
Soundproofing is any means of impeding sound propagation. There are several methods employed including increasing the distance between the source and receiver, decoupling, using noise barriers to reflect or absorb the energy of the sound waves, using damping structures such as sound baffles for absorption, or using active antinoise sound generators.
Architectural acoustics is the science and engineering of achieving a good sound within a building and is a branch of acoustical engineering. The first application of modern scientific methods to architectural acoustics was carried out by the American physicist Wallace Sabine in the Fogg Museum lecture room. He applied his newfound knowledge to the design of Symphony Hall, Boston.
A raised pavement marker is a safety device used on roads. These devices are usually made with plastic, ceramic, thermoplastic paint, glass or occasionally metal, and come in a variety of shapes and colors. Raised reflective markers, such as plastic, ceramic, or metal ones, include a lens or sheeting that enhances their visibility by retroreflecting automotive headlights, while glass road studs gather automotive headlights with a dome shape and reflect the lights with a reflective layer within. Some other names for specific types of raised pavement markers include convex vibration lines, Botts' dots, delineators, cat's eyes, road studs, or road turtles. Sometimes they are simply referred to as "reflectors".
An arterial road or arterial thoroughfare is a high-capacity urban road that sits below freeways/motorways on the road hierarchy in terms of traffic flow and speed. The primary function of an arterial road is to deliver traffic from collector roads to freeways or expressways, and between urban centres at the highest level of service possible. Therefore, many arteries are limited-access roads, or feature restrictions on private access. Because of their relatively high accessibility, many major roads face large amounts of land use and urban development, making them significant urban places.
A sound baffle is a construction or device which reduces the strength (level) of airborne sound. Sound baffles are a fundamental tool of noise mitigation, the practice of minimizing noise pollution or reverberation. An important type of sound baffle is the noise barrier constructed along highways to reduce sound levels in the vicinity of properties. Sound baffles are also applied to walls and ceilings in building interiors to absorb sound energy and thus lessen reverberation.
Noise control or noise mitigation is a set of strategies to reduce noise pollution or to reduce the impact of that noise, whether outdoors or indoors.
Atmospheric dispersion modeling is the mathematical simulation of how air pollutants disperse in the ambient atmosphere. It is performed with computer programs that include algorithms to solve the mathematical equations that govern the pollutant dispersion. The dispersion models are used to estimate the downwind ambient concentration of air pollutants or toxins emitted from sources such as industrial plants, vehicular traffic or accidental chemical releases. They can also be used to predict future concentrations under specific scenarios. Therefore, they are the dominant type of model used in air quality policy making. They are most useful for pollutants that are dispersed over large distances and that may react in the atmosphere. For pollutants that have a very high spatio-temporal variability and for epidemiological studies statistical land-use regression models are also used.
Roadway air dispersion modeling is the study of air pollutant transport from a roadway or other linear emitter. Computer models are required to conduct this analysis, because of the complex variables involved, including vehicle emissions, vehicle speed, meteorology, and terrain geometry. Line source dispersion has been studied since at least the 1960s, when the regulatory framework in the United States began requiring quantitative analysis of the air pollution consequences of major roadway and airport projects. By the early 1970s this subset of atmospheric dispersion models was being applied to real-world cases of highway planning, even including some controversial court cases.
Roadway noise is the collective sound energy emanating from motor vehicles. It consists chiefly of road surface, tire, engine/transmission, aerodynamic, and braking elements. Noise of rolling tires driving on pavement is found to be the biggest contributor of highway noise and increases with higher vehicle speeds.
The AERMOD atmospheric dispersion modeling system is an integrated system that includes three modules:
A line source, as opposed to a point source, area source, or volume source, is a source of air, noise, water contamination or electromagnetic radiation that emanates from a linear (one-dimensional) geometry. The most prominent linear sources are roadway air pollution, aircraft air emissions, roadway noise, certain types of water pollution sources that emanate over a range of river extent rather than from a discrete point, elongated light tubes, certain dose models in medical physics and electromagnetic antennas. While point sources of pollution were studied since the late nineteenth century, linear sources did not receive much attention from scientists until the late 1960s, when environmental regulations for highways and airports began to emerge. At the same time, computers with the processing power to accommodate the data processing needs of the computer models required to tackle these one-dimensional sources became more available.
The following outline is provided as an overview of and topical guide to air pollution dispersion: In environmental science, air pollution dispersion is the distribution of air pollution into the atmosphere. Air pollution is the introduction of particulates, biological molecules, or other harmful materials into Earth's atmosphere, causing disease, death to humans, damage to other living organisms such as food crops, and the natural or built environment. Air pollution may come from anthropogenic or natural sources. Dispersion refers to what happens to the pollution during and after its introduction; understanding this may help in identifying and controlling it.
Noise, vibration, and harshness (NVH), also known as noise and vibration (N&V), is the study and modification of the noise and vibration characteristics of vehicles, particularly cars and trucks. While noise and vibration can be readily measured, harshness is a subjective quality, and is measured either via jury evaluations, or with analytical tools that can provide results reflecting human subjective impressions. The latter tools belong to the field psychoacoustics.
CTAG is a computational fluid dynamics model for the behaviour of air pollutants on and near roadways.
Road ecology is the study of the ecological effects of roads and highways. These effects may include local effects, such as on noise, water pollution, habitat destruction/disturbance and local air quality; and the wider environmental effects of transport such as habitat fragmentation, ecosystem degradation, and climate change from vehicle emissions.