# Decibel

Last updated

dBPower ratioAmplitude ratio
10010000000000100000
90100000000031623
8010000000010000
70100000003162
6010000001000
50100000316.2
4010000100
30100031.62
2010010
10103.162
63.981 ≈ 41.995 ≈ 2
31.995 ≈ 21.413 ≈ 2
11.2591.122
011
−10.7940.891
−30.501 ≈ 120.708 ≈ 12
−60.251 ≈ 140.501 ≈ 12
−100.10.3162
−200.010.1
−300.0010.03162
−400.00010.01
−500.000010.003162
−600.0000010.001
−700.00000010.0003162
−800.000000010.0001
−900.0000000010.00003162
−1000.00000000010.00001
An example scale showing power ratios x, amplitude ratios x, and dB equivalents 10 log10 x.

The decibel (symbol: dB) is a relative unit of measurement corresponding to one tenth of a bel (B). It is used to express the ratio of one value of a power or field quantity to another, on a logarithmic scale, the logarithmic quantity being called the power level or field level, respectively. Two signals whose levels differ by one decibel have a power ratio of 101/10 (approximately 1.25893) and an amplitude (field quantity) ratio of 10120 (1.12202).  

## Contents

It can be used to express a change in value (e.g., +1 dB or 1 dB) or an absolute value. In the latter case, it expresses the ratio of a value to a fixed reference value; when used in this way, a suffix that indicates the reference value is often appended to the decibel symbol. For example, if the reference value is 1  volt, then the suffix is "V" (e.g., "20 dBV"), and if the reference value is one milliwatt, then the suffix is "m" (e.g., "20 dBm"). 

Two different scales are used when expressing a ratio in decibels, depending on the nature of the quantities: power and field (root-power). When expressing a power ratio, the number of decibels is ten times its logarithm in base 10.  That is, a change in power by a factor of 10 corresponds to a 10 dB change in level. When expressing field (root-power) quantities, a change in amplitude by a factor of 10 corresponds to a 20 dB change in level. The decibel scales differ by a factor of two so that the related power and field levels change by the same number of decibels with linear loads.

The definition of the decibel is based on the measurement of power in telephony of the early 20th century in the Bell System in the United States. One decibel is one tenth (deci-) of one bel, named in honor of Alexander Graham Bell; however, the bel is seldom used. Today, the decibel is used for a wide variety of measurements in science and engineering, most prominently in acoustics, electronics, and control theory. In electronics, the gains of amplifiers, attenuation of signals, and signal-to-noise ratios are often expressed in decibels.

In the International System of Quantities, the decibel is defined as a unit of measurement for quantities of type level or level difference, which are defined as the logarithm of the ratio of power- or field-type quantities. 

## History

The decibel originates from methods used to quantify signal loss in telegraph and telephone circuits. The unit for loss was originally Miles of Standard Cable (MSC). 1 MSC corresponded to the loss of power over a 1  mile (approximately 1.6 km) length of standard telephone cable at a frequency of 5000  radians per second (795.8 Hz), and matched closely the smallest attenuation detectable to the average listener. The standard telephone cable implied was "a cable having uniformly distributed resistance of 88 Ohms per loop-mile and uniformly distributed shunt capacitance of 0.054  microfarads per mile" (approximately corresponding to 19  gauge wire). 

In 1924, Bell Telephone Laboratories received favorable response to a new unit definition among members of the International Advisory Committee on Long Distance Telephony in Europe and replaced the MSC with the Transmission Unit (TU). 1 TU was defined such that the number of TUs was ten times the base-10 logarithm of the ratio of measured power to a reference power.  The definition was conveniently chosen such that 1 TU approximated 1 MSC; specifically, 1 MSC was 1.056 TU. In 1928, the Bell system renamed the TU into the decibel,  being one tenth of a newly defined unit for the base-10 logarithm of the power ratio. It was named the bel, in honor of the telecommunications pioneer Alexander Graham Bell.  The bel is seldom used, as the decibel was the proposed working unit. 

The naming and early definition of the decibel is described in the NBS Standard's Yearbook of 1931: 

Since the earliest days of the telephone, the need for a unit in which to measure the transmission efficiency of telephone facilities has been recognized. The introduction of cable in 1896 afforded a stable basis for a convenient unit and the "mile of standard" cable came into general use shortly thereafter. This unit was employed up to 1923 when a new unit was adopted as being more suitable for modern telephone work. The new transmission unit is widely used among the foreign telephone organizations and recently it was termed the "decibel" at the suggestion of the International Advisory Committee on Long Distance Telephony.

The decibel may be defined by the statement that two amounts of power differ by 1 decibel when they are in the ratio of 100.1 and any two amounts of power differ by N decibels when they are in the ratio of 10N(0.1). The number of transmission units expressing the ratio of any two powers is therefore ten times the common logarithm of that ratio. This method of designating the gain or loss of power in telephone circuits permits direct addition or subtraction of the units expressing the efficiency of different parts of the circuit ...

In 1954, J. W. Horton argued that the use of the decibel as a unit for quantities other than transmission loss led to confusion, and suggested the name logit for "standard magnitudes which combine by multiplication", to contrast with the name unit for "standard magnitudes which combine by addition".  [ clarification needed ]

In April 2003, the International Committee for Weights and Measures (CIPM) considered a recommendation for the inclusion of the decibel in the International System of Units (SI), but decided against the proposal.  However, the decibel is recognized by other international bodies such as the International Electrotechnical Commission (IEC) and International Organization for Standardization (ISO).  The IEC permits the use of the decibel with field quantities as well as power and this recommendation is followed by many national standards bodies, such as NIST, which justifies the use of the decibel for voltage ratios.  The term field quantity is deprecated by ISO 80000-1, which favors root-power. In spite of their widespread use, suffixes (such as in dBA or dBV) are not recognized by the IEC or ISO.

## Definition

ISO 80000-3 describes definitions for quantities and units of space and time.

The ISO Standard 80000-3:2006 defines the following quantities. The decibel (dB) is one-tenth of a bel: 1 dB = 0.1 B. The bel (B) is 12 ln(10) nepers: 1 B = 12 ln(10) Np. The neper is the change in the level of a field quantity when the field quantity changes by a factor of e, that is 1 Np = ln(e) = 1, thereby relating all of the units as nondimensional natural log of field-quantity ratios, 1 dB = 0.11513… Np = 0.11513…. Finally, the level of a quantity is the logarithm of the ratio of the value of that quantity to a reference value of the same kind of quantity.

Therefore, the bel represents the logarithm of a ratio between two power quantities of 10:1, or the logarithm of a ratio between two field quantities of 10:1. 

Two signals whose levels differ by one decibel have a power ratio of 101/10, which is approximately 1.25893, and an amplitude (field quantity) ratio of 10120 (1.12202).  

The bel is rarely used either without a prefix or with SI unit prefixes other than deci ; it is preferred, for example, to use hundredths of a decibel rather than millibels. Thus, five one-thousandths of a bel would normally be written '0.05 dB', and not '5 mB'. 

The method of expressing a ratio as a level in decibels depends on whether the measured property is a power quantity or a root-power quantity; see Power, root-power, and field quantities for details.

### Power quantities

When referring to measurements of power quantities, a ratio can be expressed as a level in decibels by evaluating ten times the base-10 logarithm of the ratio of the measured quantity to reference value. Thus, the ratio of P (measured power) to P0 (reference power) is represented by LP, that ratio expressed in decibels,  which is calculated using the formula: 

$L_{P}={\frac {1}{2}}\ln \!\left({\frac {P}{P_{0}}}\right)\,{\text{Np}}=10\log _{10}\!\left({\frac {P}{P_{0}}}\right)\,{\text{dB}}.$ The base-10 logarithm of the ratio of the two power quantities is the number of bels. The number of decibels is ten times the number of bels (equivalently, a decibel is one-tenth of a bel). P and P0 must measure the same type of quantity, and have the same units before calculating the ratio. If P = P0 in the above equation, then LP = 0. If P is greater than P0 then LP is positive; if P is less than P0 then LP is negative.

Rearranging the above equation gives the following formula for P in terms of P0 and LP:

$P=10^{\frac {L_{P}}{10\,{\text{dB}}}}P_{0}.$ ### Field quantities and root-power quantities

When referring to measurements of field quantities, it is usual to consider the ratio of the squares of F (measured field) and F0 (reference field). This is because in most applications power is proportional to the square of field, and historically their definitions were formulated to give the same value for relative ratios in such typical cases. Thus, the following definition is used:

$L_{F}=\ln \!\left({\frac {F}{F_{0}}}\right)\,{\text{Np}}=10\log _{10}\!\left({\frac {F^{2}}{F_{0}^{2}}}\right)\,{\text{dB}}=20\log _{10}\left({\frac {F}{F_{0}}}\right)\,{\text{dB}}.$ The formula may be rearranged to give

$F=10^{\frac {L_{F}}{20\,{\text{dB}}}}F_{0}.$ Similarly, in electrical circuits, dissipated power is typically proportional to the square of voltage or current when the impedance is constant. Taking voltage as an example, this leads to the equation for power gain level LG:

$L_{G}=20\log _{10}\!\left({\frac {V_{\text{out}}}{V_{\text{in}}}}\right)\,{\text{dB}},$ where Vout is the root-mean-square (rms) output voltage, Vin is the rms input voltage. A similar formula holds for current.

The term root-power quantity is introduced by ISO Standard 80000-1:2009 as a substitute of field quantity. The term field quantity is deprecated by that standard.

### Relationship between power level and field level

Although power and field quantities are different quantities, their respective levels are historically measured in the same units, typically decibels. A factor of 2 is introduced to make changes in the respective levels match under restricted conditions such as when the medium is linear and the same waveform is under consideration with changes in amplitude, or the medium impedance is linear and independent of both frequency and time. This relies on the relationship

${\frac {P(t)}{P_{0}}}=\left({\frac {F(t)}{F_{0}}}\right)^{2}$ holding.  In a nonlinear system, this relationship does not hold by the definition of linearity. However, even in a linear system in which the power quantity is the product of two linearly related quantities (e.g. voltage and current), if the impedance is frequency- or time-dependent, this relationship does not hold in general, for example if the energy spectrum of the waveform changes.

For differences in level, the required relationship is relaxed from that above to one of proportionality (i.e., the reference quantities P0 and F0 need not be related), or equivalently,

${\frac {P_{2}}{P_{1}}}=\left({\frac {F_{2}}{F_{1}}}\right)^{2}$ must hold to allow the power level difference to be equal to the field level difference from power P1 and V1 to P2 and V2. An example might be an amplifier with unity voltage gain independent of load and frequency driving a load with a frequency-dependent impedance: the relative voltage gain of the amplifier is always 0 dB, but the power gain depends on the changing spectral composition of the waveform being amplified. Frequency-dependent impedances may be analyzed by considering the quantities power spectral density and the associated field quantities via the Fourier transform, which allows elimination of the frequency dependence in the analysis by analyzing the system at each frequency independently.

### Conversions

Since logarithm differences measured in these units often represent power ratios and field ratios, values for both are shown below. The bel is traditionally used as a unit of logarithmic power ratio, while the neper is used for logarithmic field (amplitude) ratio.

Conversion between units of level and a list of corresponding ratios
UnitIn decibelsIn belsIn nepers Power ratioField ratio
1 dB1 dB0.1 B0.11513 Np10110 ≈ 1.2589310120 ≈ 1.12202
1 Np8.68589 dB0.868589 B1 Npe2 ≈ 7.38906 e ≈ 2.71828
1 B10 dB1 B1.1513 Np101012 ≈ 3.16228

### Examples

The unit dBW is often used to denote a ratio for which the reference is 1 W, and similarly dBm for a 1 mW reference point.

• Calculating the ratio in decibels of 1 kW (one kilowatt, or 1000 watts) to 1 W yields:
$L_{G}=10\log _{10}\left({\frac {1000\,{\text{W}}}{1\,{\text{W}}}}\right)\,{\text{dB}}=30\,{\text{dB}}.$ • The ratio in decibels of 1000 V ≈ 31.62 V to 1 V is
$L_{G}=20\log _{10}\left({\frac {31.62\,{\text{V}}}{1\,{\text{V}}}}\right)\,{\text{dB}}=30\,{\text{dB}}.$ (31.62 V / 1 V)2 ≈ 1 kW / 1 W, illustrating the consequence from the definitions above that LG has the same value, 30 dB, regardless of whether it is obtained from powers or from amplitudes, provided that in the specific system being considered power ratios are equal to amplitude ratios squared.

• The ratio in decibels of 1 mW (one milliwatt) to 10 W is obtained with the formula
$L_{G}=10\log _{10}\left({\frac {0.001{\text{ W}}}{10{\text{ W}}}}\right){\text{ dB}}=-40{\text{ dB}}.$ • The power ratio corresponding to a 3 dB change in level is given by
$G=10^{\frac {3}{10}}\times 1=1.99526\ldots \approx 2.$ A change in power ratio by a factor of 10 corresponds to a change in level of 10 dB. A change in power ratio by a factor of 2 or 12 is approximately a change of 3 dB. More precisely, the change is ±3.0103 dB, but this is almost universally rounded to "3 dB" in technical writing. This implies an increase in voltage by a factor of 2 ≈ 1.4142. Likewise, a doubling or halving of the voltage, and quadrupling or quartering of the power, is commonly described as "6 dB" rather than ±6.0206 dB.

Should it be necessary to make the distinction, the number of decibels is written with additional significant figures. 3.000 dB corresponds to a power ratio of 10310, or 1.9953, about 0.24% different from exactly 2, and a voltage ratio of 1.4125, 0.12% different from exactly 2. Similarly, an increase of 6.000 dB corresponds to the power ratio is 10610 ≈ 3.9811, about 0.5% different from 4.

## Properties

The decibel is useful for representing large ratios and for simplifying representation of multiplied effects such as attenuation from multiple sources along a signal chain. Its application in systems with additive effects is less intuitive.

### Reporting large ratios

The logarithmic scale nature of the decibel means that a very large range of ratios can be represented by a convenient number, in a manner similar to scientific notation. This allows one to clearly visualize huge changes of some quantity. See Bode plot and Semi-log plot . For example, 120 dB SPL may be clearer than "a trillion times more intense than the threshold of hearing".

### Representation of multiplication operations

Level values in decibels can be added instead of multiplying the underlying power values, which means that the overall gain of a multi-component system, such as a series of amplifier stages, can be calculated by summing the gains in decibels of the individual components, rather than multiply the amplification factors; that is, log(A × B × C) = log(A) + log(B) + log(C). Practically, this means that, armed only with the knowledge that 1 dB is a power gain of approximately 26%, 3 dB is approximately 2× power gain, and 10 dB is 10× power gain, it is possible to determine the power ratio of a system from the gain in dB with only simple addition and multiplication. For example:

• A system consists of 3 amplifiers in series, with gains (ratio of power out to in) of 10 dB, 8 dB, and 7 dB respectively, for a total gain of 25 dB. Broken into combinations of 10, 3, and 1 dB, this is:
25 dB = 10 dB + 10 dB + 3 dB + 1 dB + 1 dB
With an input of 1 watt, the output is approximately
1 W × 10 × 10 × 2 × 1.26 × 1.26 ≈ 317.5 W
Calculated precisely, the output is 1 W × 102510 ≈ 316.2 W. The approximate value has an error of only +0.4% with respect to the actual value, which is negligible given the precision of the values supplied and the accuracy of most measurement instrumentation.

However, according to its critics, the decibel creates confusion, obscures reasoning, is more related to the era of slide rules than to modern digital processing, and is cumbersome and difficult to interpret.  

According to Mitschke,  "The advantage of using a logarithmic measure is that in a transmission chain, there are many elements concatenated, and each has its own gain or attenuation. To obtain the total, addition of decibel values is much more convenient than multiplication of the individual factors." However, for the same reason that humans excel at additive operation over multiplication, decibels are awkward in inherently additive operations:  "if two machines each individually produce a sound pressure level of, say, 90 dB at a certain point, then when both are operating together we should expect the combined sound pressure level to increase to 93 dB, but certainly not to 180 dB!"; "suppose that the noise from a machine is measured (including the contribution of background noise) and found to be 87 dBA but when the machine is switched off the background noise alone is measured as 83 dBA. [...] the machine noise [level (alone)] may be obtained by 'subtracting' the 83 dBA background noise from the combined level of 87 dBA; i.e., 84.8 dBA."; "in order to find a representative value of the sound level in a room a number of measurements are taken at different positions within the room, and an average value is calculated. [...] Compare the logarithmic and arithmetic averages of [...] 70 dB and 90 dB: logarithmic average = 87 dB; arithmetic average = 80 dB."

Addition on a logarithmic scale is called logarithmic addition, and can be defined by taking exponentials to convert to a linear scale, adding there, and then taking logarithms to return. For example, where operations on decibels are logarithmic addition/subtraction and logarithmic multiplication/division, while operations on the linear scale are the usual operations:

$87\,{\text{dBA}}-83\,{\text{dBA}}=10\cdot \log _{10}{\bigl (}10^{87/10}-10^{83/10}{\bigr )}\,{\text{dBA}}\approx 84.8\,{\text{dBA}}$ {\begin{aligned}M_{\text{lm}}(70,90)&=\left(70\,{\text{dBA}}+90\,{\text{dBA}}\right)/2\\&=10\cdot \log _{10}\left({\bigl (}10^{70/10}+10^{90/10}{\bigr )}/2\right)\,{\text{dBA}}\\&=10\cdot \left(\log _{10}{\bigl (}10^{70/10}+10^{90/10}{\bigr )}-\log _{10}2\right)\,{\text{dBA}}\approx 87\,{\text{dBA}}.\end{aligned}} Note that the logarithmic mean is obtained from the logarithmic sum by subtracting $10\log _{10}2$ , since logarithmic division is linear subtraction.

Quantities in decibels are not necessarily additive,   thus being "of unacceptable form for use in dimensional analysis". 

## Uses

### Perception

The human perception of the intensity of sound and light more nearly approximates the logarithm of intensity rather than a linear relationship (see Weber–Fechner law), making the dB scale a useful measure.      

### Acoustics Examples of sound levels in decibels from various sound sources and activities, taken from the "How loud is too loud" screen of the NIOSH Sound Level Meter app

The decibel is commonly used in acoustics as a unit of sound pressure level. The reference pressure for sound in air is set at the typical threshold of perception of an average human and there are common comparisons used to illustrate different levels of sound pressure. Sound pressure is a field quantity, therefore the field version of the unit definition is used:

$L_{p}=20\log _{10}\!\left({\frac {p_{\text{rms}}}{p_{\text{ref}}}}\right)\,{\text{dB}},$ where prms is the root mean square of the measured sound pressure and pref is the standard reference sound pressure of 20 micropascals in air or 1 micropascal in water. 

Use of the decibel in underwater acoustics leads to confusion, in part because of this difference in reference value. 

The human ear has a large dynamic range in sound reception. The ratio of the sound intensity that causes permanent damage during short exposure to that of the quietest sound that the ear can hear is greater than or equal to 1 trillion (1012).  Such large measurement ranges are conveniently expressed in logarithmic scale: the base-10 logarithm of 1012 is 12, which is expressed as a sound pressure level of 120 dB re 20  μPa.

Since the human ear is not equally sensitive to all sound frequencies, the acoustic power spectrum is modified by frequency weighting (A-weighting being the most common standard) to get the weighted acoustic power before converting to a sound level or noise level in decibels. 

### Telephony

The decibel is used in telephony and audio. Similarly to the use in acoustics, a frequency weighted power is ofter used. For audio noise measurements in electrical circuits, the weightings are called psophometric weightings. 

### Electronics

In electronics, the decibel is often used to express power or amplitude ratios (as for gains) in preference to arithmetic ratios or percentages. One advantage is that the total decibel gain of a series of components (such as amplifiers and attenuators) can be calculated simply by summing the decibel gains of the individual components. Similarly, in telecommunications, decibels denote signal gain or loss from a transmitter to a receiver through some medium (free space, waveguide, coaxial cable, fiber optics, etc.) using a link budget.

The decibel unit can also be combined with a reference level, often indicated via a suffix, to create an absolute unit of electric power. For example, it can be combined with "m" for "milliwatt" to produce the "dBm". A power level of 0 dBm corresponds to one milliwatt, and 1 dBm is one decibel greater (about 1.259 mW).

In professional audio specifications, a popular unit is the dBu. This is relative to the root mean square voltage which delivers 1 mW (0 dBm) into a 600-ohm resistor, or 1 mW×600 Ω ≈ 0.775 VRMS. When used in a 600-ohm circuit (historically, the standard reference impedance in telephone circuits), dBu and dBm are identical.

### Optics

In an optical link, if a known amount of optical power, in dBm (referenced to 1 mW), is launched into a fiber, and the losses, in dB (decibels), of each component (e.g., connectors, splices, and lengths of fiber) are known, the overall link loss may be quickly calculated by addition and subtraction of decibel quantities. 

In spectrometry and optics, the blocking unit used to measure optical density is equivalent to −1 B.

### Video and digital imaging

In connection with video and digital image sensors, decibels generally represent ratios of video voltages or digitized light intensities, using 20 log of the ratio, even when the represented intensity (optical power) is directly proportional to the voltage generated by the sensor, not to its square, as in a CCD imager where response voltage is linear in intensity.  Thus, a camera signal-to-noise ratio or dynamic range quoted as 40 dB represents a ratio of 100:1 between optical signal intensity and optical-equivalent dark-noise intensity, not a 10,000:1 intensity (power) ratio as 40 dB might suggest.  Sometimes the 20 log ratio definition is applied to electron counts or photon counts directly, which are proportional to sensor signal amplitude without the need to consider whether the voltage response to intensity is linear. 

However, as mentioned above, the 10 log intensity convention prevails more generally in physical optics, including fiber optics, so the terminology can become murky between the conventions of digital photographic technology and physics. Most commonly, quantities called "dynamic range" or "signal-to-noise" (of the camera) would be specified in 20 log dB, but in related contexts (e.g. attenuation, gain, intensifier SNR, or rejection ratio) the term should be interpreted cautiously, as confusion of the two units can result in very large misunderstandings of the value.

Photographers typically use an alternative base-2 log unit, the stop, to describe light intensity ratios or dynamic range.

## Suffixes and reference values

Suffixes are commonly attached to the basic dB unit in order to indicate the reference value by which the ratio is calculated. For example, dBm indicates power measurement relative to 1 milliwatt.

In cases where the unit value of the reference is stated, the decibel value is known as "absolute". If the unit value of the reference is not explicitly stated, as in the dB gain of an amplifier, then the decibel value is considered relative.

The SI does not permit attaching qualifiers to units, whether as suffix or prefix, other than standard SI prefixes. Therefore, even though the decibel is accepted for use alongside SI units, the practice of attaching a suffix to the basic dB unit, forming compound units such as dBm, dBu, dBA, etc., is not.  The proper way, according to the IEC 60027-3,  is either as Lx (re xref) or as Lx/xref, where x is the quantity symbol and xref is the value of the reference quantity, e.g., LE (re 1 μV/m) = LE/(1 μV/m) for the electric field strength E relative to 1 μV/m reference value.

Outside of documents adhering to SI units, the practice is very common as illustrated by the following examples. There is no general rule, with various discipline-specific practices. Sometimes the suffix is a unit symbol ("W","K","m"), sometimes it is a transliteration of a unit symbol ("uV" instead of μV for microvolt), sometimes it is an acronym for the unit's name ("sm" for square meter, "m" for milliwatt), other times it is a mnemonic for the type of quantity being calculated ("i" for antenna gain with respect to an isotropic antenna, "λ" for anything normalized by the EM wavelength), or otherwise a general attribute or identifier about the nature of the quantity ("A" for A-weighted sound pressure level). The suffix is often connected with a hyphen, as in "dBHz", or with a space, as in "dB HL", or with no intervening character, as in "dBm", or enclosed in parentheses, as in "dB(sm)".

### Voltage

Since the decibel is defined with respect to power, not amplitude, conversions of voltage ratios to decibels must square the amplitude, or use the factor of 20 instead of 10, as discussed above. A schematic showing the relationship between dBu (the voltage source) and dBm (the power dissipated as heat by the 600 Ω resistor)
dBV
dB(V RMS ) voltage relative to 1 volt, regardless of impedance.  This is used to measure microphone sensitivity, and also to specify the consumer line-level of −10 dBV, in order to reduce manufacturing costs relative to equipment using a +4 dBu line-level signal. 
dBu or dBv
RMS voltage relative to $V={\sqrt {600\,\Omega \cdot 0.001\,{\text{W}}}}\approx 0.7746\,{\text{V}}$ (i.e. the voltage that would dissipate 1 mW into a 600 Ω load). An RMS voltage of 1 V therefore corresponds to $20\cdot \log _{10}\left({\frac {1\,V_{\text{RMS}}}{{\sqrt {0.6}}\,V}}\right)=2.218\,{\text{dBu}}.$ Originally dBv, it was changed to dBu to avoid confusion with dBV.  The "v" comes from "volt", while "u" comes from the volume unit used in the VU meter. 
dBu can be used as a measure of voltage, regardless of impedance, but is derived from a 600 Ω load dissipating 0 dBm (1 mW). The reference voltage comes from the computation $V={\sqrt {Resistance\cdot Power}}$ .
In professional audio, equipment may be calibrated to indicate a "0" on the VU meters some finite time after a signal has been applied at an amplitude of +4 dBu. Consumer equipment typically uses a lower "nominal" signal level of −10 dBV.  Therefore, many devices offer dual voltage operation (with different gain or "trim" settings) for interoperability reasons. A switch or adjustment that covers at least the range between +4 dBu and −10 dBV is common in professional equipment.
dBm0s
Defined by Recommendation ITU-R V.574.; dBmV: dB(mV RMS ) – voltage relative to 1 millivolt across 75 Ω.  Widely used in cable television networks, where the nominal strength of a single TV signal at the receiver terminals is about 0 dBmV. Cable TV uses 75 Ω coaxial cable, so 0 dBmV corresponds to −78.75 dBW (−48.75 dBm) or approximately 13 nW.
dBμV or dBuV
dB(μV RMS ) voltage relative to 1 microvolt. Widely used in television and aerial amplifier specifications. 60 dBμV = 0 dBmV.

### Acoustics

Probably the most common usage of "decibels" in reference to sound level is dB SPL, sound pressure level referenced to the nominal threshold of human hearing:  The measures of pressure (a field quantity) use the factor of 20, and the measures of power (e.g. dB SIL and dB SWL) use the factor of 10.

dB SPL
dB SPL (sound pressure level) – for sound in air and other gases, relative to 20 micropascals (μPa), or 2×10−5 Pa, approximately the quietest sound a human can hear. For sound in water and other liquids, a reference pressure of 1 μPa is used. 
An RMS sound pressure of one pascal corresponds to a level of 94 dB SPL.
dB SIL
dB sound intensity level – relative to 10−12 W/m², which is roughly the threshold of human hearing in air.
dB SWL
dB sound power level – relative to 10−12 W.
dBA, dBB, and dBC
These symbols are often used to denote the use of different weighting filters, used to approximate the human ear's response to sound, although the measurement is still in dB (SPL). These measurements usually refer to noise and its effects on humans and other animals, and they are widely used in industry while discussing noise control issues, regulations and environmental standards. Other variations that may be seen are dBA or dB(A). According to standards from the International Electro-technical Committee (IEC 61672-2013)  and the American National Standards Institute, ANSI S1.4,  the preferred usage is to write LA = x dB. Nevertheless, the units dBA and dB(A) are still commonly used as a shorthand for Aweighted measurements. Compare dBc, used in telecommunications.
dB HL
dB hearing level is used in audiograms as a measure of hearing loss. The reference level varies with frequency according to a minimum audibility curve as defined in ANSI and other standards, such that the resulting audiogram shows deviation from what is regarded as 'normal' hearing.[ citation needed ]
dB Q
sometimes used to denote weighted noise level, commonly using the ITU-R 468 noise weighting [ citation needed ]
dBpp
relative to the peak to peak sound pressure. 
dBG
Gweighted spectrum 

### Audio electronics

dBm
dB(mW) – power relative to 1  milliwatt. In audio and telephony, dBm is typically referenced relative to a 600 Ω impedance,  which corresponds to a voltage level of 0.775 volts or 775 millivolts.
dBm0
Power in dBm (described above) measured at a zero transmission level point.
dBFS
dB(full scale) – the amplitude of a signal compared with the maximum which a device can handle before clipping occurs. Full-scale may be defined as the power level of a full-scale sinusoid or alternatively a full-scale square wave. A signal measured with reference to a full-scale sine-wave appears 3 dB weaker when referenced to a full-scale square wave, thus: 0 dBFS(fullscale sine wave) = −3 dBFS(fullscale square wave).
dBVU
dB volume unit 
dBTP
dB(true peak) – peak amplitude of a signal compared with the maximum which a device can handle before clipping occurs.  In digital systems, 0 dBTP would equal the highest level (number) the processor is capable of representing. Measured values are always negative or zero, since they are less than or equal to full-scale.

dBZ
dB(Z) – decibel relative to Z = 1 mm6⋅m−3:  energy of reflectivity (weather radar), related to the amount of transmitted power returned to the radar receiver. Values above 20 dBZ usually indicate falling precipitation. 
dBsm
dB(m²) – decibel relative to one square meter: measure of the radar cross section (RCS) of a target. The power reflected by the target is proportional to its RCS. "Stealth" aircraft and insects have negative RCS measured in dBsm, large flat plates or non-stealthy aircraft have positive values. 

### Radio power, energy, and field strength

dBc
relative to carrier – in telecommunications, this indicates the relative levels of noise or sideband power, compared with the carrier power. Compare dBC, used in acoustics.
dBpp
relative to the maximum value of the peak power.
dBJ
energy relative to 1  joule. 1 joule = 1 watt second = 1 watt per hertz, so power spectral density can be expressed in dBJ.
dBm
dB(mW) – power relative to 1  milliwatt. In the radio field, dBm is usually referenced to a 50 Ω load, with the resultant voltage being 0.224 volts. 
dBμV/m, dBuV/m, or dBμ
 dB(μV/m) – electric field strength relative to 1  microvolt per meter. The unit is often used to specify the signal strength of a television broadcast at a receiving site (the signal measured at the antenna output is reported in dBμV).
dBf
dB(fW) – power relative to 1  femtowatt.
dBW
dB(W) – power relative to 1  watt.
dBk
dB(kW) – power relative to 1  kilowatt.
dBe
dB electrical.
dBo
dB optical. A change of 1 dBo in optical power can result in a change of up to 2 dBe in electrical signal power in a system that is thermal noise limited. 

### Antenna measurements

dBi
dB(isotropic) – the forward gain of an antenna compared with the hypothetical isotropic antenna, which uniformly distributes energy in all directions. Linear polarization of the EM field is assumed unless noted otherwise.
dBd
dB(dipole) – the forward gain of an antenna compared with a half-wave dipole antenna. 0 dBd = 2.15 dBi
dBiC
dB(isotropic circular) – the forward gain of an antenna compared to a circularly polarized isotropic antenna. There is no fixed conversion rule between dBiC and dBi, as it depends on the receiving antenna and the field polarization.
dBq
dB(quarterwave) – the forward gain of an antenna compared to a quarter wavelength whip. Rarely used, except in some marketing material. 0 dBq = −0.85 dBi
dBsm
dB(m²) – decibel relative to one square meter: measure of the antenna effective area. 
dBm−1
dB(m−1) – decibel relative to reciprocal of meter: measure of the antenna factor.

### Other measurements

dBHz
dB(Hz) – bandwidth relative to one hertz. E.g., 20 dBHz corresponds to a bandwidth of 100 Hz. Commonly used in link budget calculations. Also used in carrier-to-noise-density ratio (not to be confused with carrier-to-noise ratio, in dB).
dBov or dBO
dB(overload) – the amplitude of a signal (usually audio) compared with the maximum which a device can handle before clipping occurs. Similar to dBFS, but also applicable to analog systems. According to ITU-T Rec. G.100.1 the level in dBov of a digital system is defined as:
$L_{\text{ov}}=10\log _{10}\left({\frac {P}{P_{0}}}\right)\ [{\text{dBov}}]$ ,
with the maximum signal power $P_{0}=1.0$ , for a rectangular signal with the maximum amplitude $x_{\text{over}}$ . The level of a tone with a digital amplitude (peak value) of $x_{\text{over}}$ is therefore $L=-3.01\ {\text{dBov}}$ . 
dBr
dB(relative) – simply a relative difference from something else, which is made apparent in context. The difference of a filter's response to nominal levels, for instance.
dBrn
dBrnC
dBrnC represents an audio level measurement, typically in a telephone circuit, relative to a -90 dBm reference level, with the measurement of this level frequency-weighted by a standard C-message weighting filter. The C-message weighting filter was chiefly used in North America. The Psophometric filter is used for this purpose on international circuits. See Psophometric weighting to see a comparison of frequency response curves for the C-message weighting and Psophometric weighting filters. 
dBK
dB(K) – decibels relative to 1  K; used to express noise temperature. 
dB/K
dB(K−1) – decibels relative to 1 K−1.   not decibels per kelvin: Used for the G/T factor, a figure of merit utilized in satellite communications, relating the antenna gain G to the receiver system noise equivalent temperature T.  

### List of suffixes in alphabetical order

#### Unpunctuated suffixes

dBA
see dB(A).
dBB
see dB(B).
dBc
relative to carrier – in telecommunications, this indicates the relative levels of noise or sideband power, compared with the carrier power.
dBC
see dB(C).
dBd
dB(dipole) – the forward gain of an antenna compared with a half-wave dipole antenna. 0 dBd = 2.15 dBi
dBe
dB electrical.
dBf
dB(fW) – power relative to 1 femtowatt.
dBFS
dB(full scale) – the amplitude of a signal compared with the maximum which a device can handle before clipping occurs. Full-scale may be defined as the power level of a full-scale sinusoid or alternatively a full-scale square wave. A signal measured with reference to a full-scale sine-wave appears 3 dB weaker when referenced to a full-scale square wave, thus: 0 dBFS(fullscale sine wave) = −3 dBFS(fullscale square wave).
dBG
G-weighted spectrum
dBi
dB(isotropic) – the forward gain of an antenna compared with the hypothetical isotropic antenna, which uniformly distributes energy in all directions. Linear polarization of the EM field is assumed unless noted otherwise.
dBiC
dB(isotropic circular) – the forward gain of an antenna compared to a circularly polarized isotropic antenna. There is no fixed conversion rule between dBiC and dBi, as it depends on the receiving antenna and the field polarization.
dBJ
energy relative to 1 joule. 1 joule = 1 watt second = 1 watt per hertz, so power spectral density can be expressed in dBJ.
dBk
dB(kW) – power relative to 1 kilowatt.
dBK
dB(K) – decibels relative to kelvin: Used to express noise temperature.
dBm
dB(mW) – power relative to 1 milliwatt.
dBm0
Power in dBm measured at a zero transmission level point.
dBm0s
Defined by Recommendation ITU-R V.574.
dBmV
dB(mV RMS ) – voltage relative to 1 millivolt across 75 Ω.
dBo
dB optical. A change of 1 dBo in optical power can result in a change of up to 2 dBe in electrical signal power in system that is thermal noise limited.
dBO
see dBov
dBov or dBO
dB(overload) – the amplitude of a signal (usually audio) compared with the maximum which a device can handle before clipping occurs.
dBpp
relative to the peak to peak sound pressure.
dBpp
relative to the maximum value of the peak power.
dBq
dB(quarterwave) – the forward gain of an antenna compared to a quarter wavelength whip. Rarely used, except in some marketing material. 0 dBq = −0.85 dBi
dBr
dB(relative) – simply a relative difference from something else, which is made apparent in context. The difference of a filter's response to nominal levels, for instance.
dBrn
dBrnC
dBrnC represents an audio level measurement, typically in a telephone circuit, relative to the circuit noise level, with the measurement of this level frequency-weighted by a standard C-message weighting filter. The C-message weighting filter was chiefly used in North America.
dBsm
dB(m²) – decibel relative to one square meter
dBTP
dB(true peak) – peak amplitude of a signal compared with the maximum which a device can handle before clipping occurs.
dBu or dBv
RMS voltage relative to ${\sqrt {0.6}}\,{\text{V}}\,\approx 0.7746\,{\text{V}}\,\approx -2.218\,{\text{dBV}}$ .
dBu0s
Defined by Recommendation ITU-R V.574.
dBuV
see dBμV
dBuV/m
see dBμV/m
dBv
see dBu
dBV
dB(V RMS ) – voltage relative to 1 volt, regardless of impedance.
dBVU
dB volume unit
dBW
dB(W) – power relative to 1 watt.
dBZ
dB(Z) – decibel relative to Z = 1 mm6⋅m−3
dBμ
see dBμV/m
dBμV or dBuV
dB(μV RMS ) – voltage relative to 1 microvolt.
dBμV/m, dBuV/m, or dBμ
dB(μV/m) – electric field strength relative to 1 microvolt per meter.

#### Suffixes preceded by a space

dB HL
dB hearing level is used in audiograms as a measure of hearing loss.
dB Q
sometimes used to denote weighted noise level
dB SIL
dB sound intensity level – relative to 10−12 W/m²
dB SPL
dB SPL (sound pressure level) – for sound in air and other gases, relative to 20 μPa in air or 1 μPa in water
dB SWL
dB sound power level – relative to 10−12 W.

#### Suffixes within parentheses

dB(A), dB(B), and dB(C)
These symbols are often used to denote the use of different weighting filters, used to approximate the human ear's response to sound, although the measurement is still in dB (SPL). These measurements usually refer to noise and its effects on humans and other animals, and they are widely used in industry while discussing noise control issues, regulations and environmental standards. Other variations that may be seen are dBA or dBA.

#### Other suffixes

dB-Hz
dB(Hz) – bandwidth relative to one hertz.
dB/K
dB(K−1) – decibels relative to reciprocal of kelvin
dBm−1
dB(m−1) – decibel relative to reciprocal of meter: measure of the antenna factor.
mBm
mB(mW) – power relative to 1 milliwatt, in millibels (one hundredth of a decibel). 100 mBm = 1 dBm. This unit is in the Wi-Fi drivers of the Linux kernel  and the regulatory domain sections. 
Np
Another closely related unit is the neper (Np). Like the decibel, the neper is a unit of level. 
$1\ {\rm {Np}}=20\log _{10}e\ {\rm {dB}}\approx 8{.}685889638\ {\rm {dB}}\,$ ## Fractions

Attenuation constants, in fields such as optical fiber communication and radio propagation path loss, are often expressed as a fraction or ratio to distance of transmission. dB/m represents decibel per meter, dB/mi represents decibel per mile, for example. These quantities are to be manipulated obeying the rules of dimensional analysis, e.g., a 100-meter run with a 3.5 dB/km fiber yields a loss of 0.35 dB = 3.5 dB/km × 0.1 km.

## Related Research Articles

dBm is a unit of level used to indicate that a power ratio is expressed in decibels (dB) with reference to one milliwatt (mW). It is used in radio, microwave and fiber-optical communication networks as a convenient measure of absolute power because of its capability to express both very large and very small values in a short form compared to dBW, which is referenced to one watt (1000 mW).

The neper is a logarithmic unit for ratios of measurements of physical field and power quantities, such as gain and loss of electronic signals. The unit's name is derived from the name of John Napier, the inventor of logarithms. As is the case for the decibel and bel, the neper is a unit defined in the international standard ISO 80000. It is not part of the International System of Units (SI), but is accepted for use alongside the SI.

In telecommunications, return loss is the loss of power in the signal returned/reflected by a discontinuity in a transmission line or optical fiber. This discontinuity can be a mismatch with the terminating load or with a device inserted in the line. It is usually expressed as a ratio in decibels (dB);

Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.

In telecommunications, a third-order intercept point (IP3 or TOI) is a specific figure of merit associated with the more general third-order intermodulation distortion (IMD3), which is a measure for weakly nonlinear systems and devices, for example receivers, linear amplifiers and mixers. It is based on the idea that the device nonlinearity can be modeled using a low-order polynomial, derived by means of Taylor series expansion. The third-order intercept point relates nonlinear products caused by the third-order nonlinear term to the linearly amplified signal, in contrast to the second-order intercept point that uses second-order terms. In electronics, gain is a measure of the ability of a two-port circuit to increase the power or amplitude of a signal from the input to the output port by adding energy converted from some power supply to the signal. It is usually defined as the mean ratio of the signal amplitude or power at the output port to the amplitude or power at the input port. It is often expressed using the logarithmic decibel (dB) units. A gain greater than one, that is amplification, is the defining property of an active component or circuit, while a passive circuit will have a gain of less than one.

In information theory, the Shannon–Hartley theorem tells the maximum rate at which information can be transmitted over a communications channel of a specified bandwidth in the presence of noise. It is an application of the noisy-channel coding theorem to the archetypal case of a continuous-time analog communications channel subject to Gaussian noise. The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a known power or power spectral density. The law is named after Claude Shannon and Ralph Hartley. A logarithmic scale is a way of displaying numerical data over a very wide range of values in a compact way—typically the largest numbers in the data are hundreds or even thousands of times larger than the smallest numbers. Such a scale is nonlinear: the numbers 10 and 20, and 60 and 70, are not the same distance apart on a log scale. Rather, the numbers 10 and 100, and 60 and 600 are equally spaced. Thus moving a unit of distance along the scale means the number has been multiplied by 10. Often exponential growth curves are displayed on a log scale, otherwise they would increase too quickly to fit within a small graph. Another way to think about it is that the number of digits of the data grows at a constant rate. For example, the numbers 10, 100, 1000, and 10000 are equally spaced on a log scale, because their numbers of digits is going up by 1 each time: 2, 3, 4, and 5 digits. In this way, adding two digits multiplies the quantity measured on the log scale by a factor of 100.

Sound pressure or acoustic pressure is the local pressure deviation from the ambient atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa).

•Intensity of Sound: Sound energy flowing per second through a unit area held perpendicular to the direction of a sound wave is called the Intesity of Sound. UNITS: Its unit is Watt per square meter W/m2. •It is a physical quantity and can be measured accurately.

Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. It is defined as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface." The SI unit of sound power is the watt (W). It relates to the power of the sound force on a surface enclosing a sound source, in air. For a sound source, unlike sound pressure, sound power is neither room-dependent nor distance-dependent. Sound pressure is a property of the field at a point in space, while sound power is a property of a sound source, equal to the total power emitted by that source in all directions. Sound power passing through an area is sometimes called sound flux or acoustic flux through that area.

Line level is the specified strength of an audio signal used to transmit analog sound between audio components such as CD and DVD players, television sets, audio amplifiers, and mixing consoles.

Crest factor is a parameter of a waveform, such as alternating current or sound, showing the ratio of peak values to the effective value. In other words, crest factor indicates how extreme the peaks are in a waveform. Crest factor 1 indicates no peaks, such as direct current or a square wave. Higher crest factors indicate peaks, for example sound waves tend to have high crest factors.

A link budget is an accounting of all of the power gains and losses that a communication signal experiences in a telecommunication system; from a transmitter, through a medium to the receiver. It is an equation giving the received power from the transmitter power, after the attenuation of the transmitted signal due to propagation, as well as the antenna gains and feedline and other losses, and amplification of the signal in the receiver or any repeaters it passes through. A link budget is a design aid, calculated during the design of a communication system to determine the received power, to ensure that the information is received intelligibly with an adequate signal-to-noise ratio. Randomly varying channel gains such as fading are taken into account by adding some margin depending on the anticipated severity of its effects. The amount of margin required can be reduced by the use of mitigating techniques such as antenna diversity or frequency hopping. Decibels relative to full scale is a unit of measurement for amplitude levels in digital systems, such as pulse-code modulation (PCM), which have a defined maximum peak level. The unit is similar to the units dBov and decibels relative to overload (dBO).

dBc is the power ratio of a signal to a carrier signal, expressed in decibels. For example, phase noise is expressed in dBc/Hz at a given frequency offset from the carrier. dBc can also be used as a measurement of Spurious-Free Dynamic Range (SFDR) between the desired signal and unwanted spurious outputs resulting from the use of signal converters such as a digital-to-analog converter or a frequency mixer.

In telecommunications, the carrier-to-noise ratio, often written CNR or C/N, is the signal-to-noise ratio (SNR) of a modulated signal. The term is used to distinguish the CNR of the radio frequency passband signal from the SNR of an analog base band message signal after demodulation, for example an audio frequency analog message signal. If this distinction is not necessary, the term SNR is often used instead of CNR, with the same definition.

A minimum detectable signal is a signal at the input of a system whose power allows it to be detected over the background electronic noise of the detector system. It can alternately be defined as a signal that produces a signal-to-noise ratio of a given value m at the output. In practice, m is usually chosen to be greater than unity. In some literature, the name sensitivity is used for this concept.

In science and engineering, a power level and a field level are logarithmic measures of certain quantities referenced to a standard reference value of the same type.

A power quantity is a power or a quantity directly proportional to power, e.g., energy density, acoustic intensity, and luminous intensity. Energy quantities may also be labelled as power quantities in this context.

1. Mark, James E. (2007). Physical Properties of Polymers Handbook. Springer. p. 1025. Bibcode:2007ppph.book.....M. […] the decibel represents a reduction in power of 1.258 times […]
2. Yost, William (1985). (Second ed.). Holt, Rinehart and Winston. p.  206. ISBN   978-0-12-772690-8. […] a pressure ratio of 1.122 equals + 1.0 dB […]
3. Utilities : VRMS / dBm / dBu / dBV calculator, Analog Devices, retrieved 16 September 2016
4. IEEE Standard 100: a dictionary of IEEE standards and terms (7th ed.). New York: The Institute of Electrical and Electronics Engineering. 2000. p. 288. ISBN   978-0-7381-2601-2.
5. "ISO 80000-3:2006". International Organization for Standardization . Retrieved 20 July 2013.
6. Johnson, Kenneth Simonds (1944). Transmission Circuits for Telephonic Communication: Methods of analysis and design. New York: D. Van Nostrand Co. p. 10.
7. Davis, Don; Davis, Carolyn (1997). Sound system engineering (2nd ed.). Focal Press. p. 35. ISBN   978-0-240-80305-0.
8. Hartley, R. V. L. (December 1928). "'TU' becomes 'Decibel'". Bell Laboratories Record. AT&T. 7 (4): 137–139.
9. Martin, W. H. (January 1929). "DeciBel—The New Name for the Transmission Unit". Bell System Technical Journal . 8 (1).
10. 100 Years of Telephone Switching , p. 276, at Google Books, Robert J. Chapuis, Amos E. Joel, 2003
11. Harrison, William H. (1931). "Standards for Transmission of Speech". Standards Yearbook. National Bureau of Standards, U. S. Govt. Printing Office. 119.
12. Horton, J. W. (1954). "The bewildering decibel". Electrical Engineering. 73 (6): 550–555. doi:10.1109/EE.1954.6438830.
13. "Meeting minutes" (PDF). Consultative Committee for Units. Section 3.
14. "Letter symbols to be used in electrical technology". International Electrotechnical Commission. 19 July 2002. Part 3: Logarithmic and related quantities, and their units. IEC 60027-3, Ed. 3.0.
15. Thompson, A. and Taylor, B. N. sec 8.7, "Logarithmic quantities and units: level, neper, bel", Guide for the Use of the International System of Units (SI) 2008 Edition, NIST Special Publication 811, 2nd printing (November 2008), SP811 PDF
16. "Letter symbols to be used in electrical technology". International Standard CEI-IEC 27-3. International Electrotechnical Commission. Part 3: Logarithmic quantities and units.
17. Mark, James E. (2007). Physical Properties of Polymers Handbook. Springer. p. 1025. Bibcode:2007ppph.book.....M. […] the decibel represents a reduction in power of 1.258 times […]
18. Yost, William (1985). (Second ed.). Holt, Rinehart and Winston. p.  206. ISBN   978-0-12-772690-8. […] a pressure ratio of 1.122 equals + 1.0 dB […]
19. Fedor Mitschke, Fiber Optics: Physics and Technology, Springer, 2010 ISBN   3642037038.
20. Pozar, David M. (2005). Microwave Engineering (3rd ed.). Wiley. p. 63. ISBN   978-0-471-44878-5.
21. IEC 60027-3:2002
22. I M Mills; B N Taylor; A J Thor (2001), "Definitions of the units radian, neper, bel and decibel", Metrologia, 38 (4): 353, Bibcode:2001Metro..38..353M, doi:10.1088/0026-1394/38/4/8
23. R. Hickling (1999), Noise Control and SI Units, J Acoust Soc Am 106, 3048
24. Hickling, R. (2006). Decibels and octaves, who needs them?. Journal of sound and vibration, 291(3-5), 1202-1207.
25. Fiber Optics. Springer. 2010.
26. R. J. Peters, Acoustics and Noise Control, Routledge, 12 November 2013, 400 pages, p. 13
27. Nicholas P. Cheremisinoff (1996) Noise Control in Industry: A Practical Guide, Elsevier, 203 pp, p. 7
28. Andrew Clennel Palmer (2008), Dimensional Analysis and Intelligent Experimentation, World Scientific, 154 pp, p.13
29. J. C. Gibbings, Dimensional Analysis, p.37, Springer, 2011 ISBN   1849963177.
30. Sensation and Perception , p. 268, at Google Books
31. Introduction to Understandable Physics, Volume 2 , p. SA19-PA9, at Google Books
32. Exercise Psychology , p. 407, at Google Books
33. Foundations of Perception , p. 83, at Google Books
34. Fitting The Task To The Human , p. 304, at Google Books
35. ISO 1683:2015
36. C. S. Clay (1999), Underwater sound transmission and SI units, J Acoust Soc Am 106, 3047
37. "Loud Noise Can Cause Hearing Loss". cdc.gov. Centers for Disease Control and Prevention. Retrieved 30 July 2020.
38. Richard L. St. Pierre, Jr. and Daniel J. Maguire (July 2004), The Impact of A-weighting Sound Pressure Level Measurements during the Evaluation of Noise Exposure (PDF), retrieved 13 September 2011
39. Reeve, William D. (1992). Subscriber Loop Signaling and Transmission Handbook – Analog (1st ed.). IEEE Press. ISBN   0-87942-274-2.
40. Chomycz, Bob (2000). Fiber optic installer's field manual. McGraw-Hill Professional. pp. 123–126. ISBN   978-0-07-135604-6.
41. Stephen J. Sangwine and Robin E. N. Horne (1998). The Colour Image Processing Handbook. Springer. pp. 127–130. ISBN   978-0-412-80620-9.
42. Francis T. S. Yu and Xiangyang Yang (1997). Introduction to optical engineering. Cambridge University Press. pp. 102–103. ISBN   978-0-521-57493-8.
43. Junichi Nakamura (2006). "Basics of Image Sensors". In Junichi Nakamura (ed.). Image sensors and signal processing for digital still cameras. CRC Press. pp. 79–83. ISBN   978-0-8493-3545-7.
44. Winer, Ethan (2013). The Audio Expert: Everything You Need to Know About Audio. Focal Press. p. 107. ISBN   978-0-240-82100-9.
45. stason.org, Stas Bekman: stas (at). "3.3 – What is the difference between dBv, dBu, dBV, dBm, dB SPL, and plain old dB? Why not just use regular voltage and power measurements?". stason.org.
46. deltamedia.com. "DB or Not DB". Deltamedia.com. Retrieved 16 September 2013.
47. The IEEE Standard Dictionary of Electrical and Electronics terms (6th ed.). IEEE. 1996 . ISBN   978-1-55937-833-8.
48. Jay Rose (2002). Audio postproduction for digital video. Focal Press. p. 25. ISBN   978-1-57820-116-7.
49. Morfey, C. L. (2001). Dictionary of Acoustics. Academic Press, San Diego.
50. IEC 61672-1:2013 Electroacoustics - Sound Level meters - Part 1: Specifications. Geneva: International Electrotechnical Committee. 2013.
51. ANSI S1.4-19823 Specification for Sound Level Meters, 2.3 Sound Level, p. 2–3.
52. Zimmer, Walter MX, Mark P. Johnson, Peter T. Madsen, and Peter L. Tyack. "Echolocation clicks of free-ranging Cuvier’s beaked whales (Ziphius cavirostris)." The Journal of the Acoustical Society of America 117, no. 6 (2005): 3919–3927.
53. Bigelow, Stephen (2001). . Newnes. p.  16. ISBN   978-0750671750.
54. Tharr, D. (1998). Case Studies: Transient Sounds Through Communication Headsets. Applied Occupational and Environmental Hygiene, 13(10), 691–697.
55. "Glossary: D's". National Weather Service. Archived from the original on 8 August 2019. Retrieved 25 April 2013.
56. "RIDGE Radar Frequently Asked Questions". Archived from the original on 31 March 2019. Retrieved 8 August 2019.
57. "Definition at Everything2". Archived from the original on 10 June 2019. Retrieved 8 August 2019.
58. Carr, Joseph (2002). RF Components and Circuits. Newnes. pp. 45–46. ISBN   978-0750648448.
59. "The dBµ vs. dBu Mystery: Signal Strength vs. Field Strength?". radio-timetraveller.blogspot.com. 24 February 2015. Retrieved 13 October 2016.
60. Chand, N., Magill, P. D., Swaminathan, S. V., & Daugherty, T. H. (1999). Delivery of digital video and other multimedia services (> 1 Gb/s bandwidth) in passband above the 155 Mb/s baseband services on a FTTx full service access network. Journal of lightwave technology, 17(12), 2449–2460.
61. David Adamy. EW 102: A Second Course in Electronic Warfare . Retrieved 16 September 2013.
62. ITU-T Rec. G.100.1 The use of the decibel and of relative levels in speechband telecommunications https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.100.1-201506-I!!PDF-E&type=items
63. dBrnC is defined on page 230 in "Engineering and Operations in the Bell System," (2ed), R.F. Rey (technical editor), copyright 1983, AT&T Bell Laboratories, Murray Hill, NJ, ISBN   0-932764-04-5
64. K. N. Raja Rao (31 January 2013). Satellite Communication: Concepts And Applications . Retrieved 16 September 2013.
65. Ali Akbar Arabi. Comprehensive Glossary of Telecom Abbreviations and Acronyms . Retrieved 16 September 2013.
66. Mark E. Long. The Digital Satellite TV Handbook . Retrieved 16 September 2013.
67. Mac E. Van Valkenburg (19 October 2001). Reference Data for Engineers: Radio, Electronics, Computers and Communications . Retrieved 16 September 2013.
68. "en:users:documentation:iw [Linux Wireless]". wireless.kernel.org.
69. "Is your WiFi AP Missing Channels 12 & 13?". wordpress.com. 16 May 2013.