Conversion of units

Last updated

Conversion of units is the conversion of the unit of measurement in which a quantity is expressed, typically through a multiplicative conversion factor that changes the unit without changing the quantity. This is also often loosely taken to include replacement of a quantity with a corresponding quantity that describes the same physical property.

Contents

Unit conversion is often easier within a metric system such as the SI than in others, due to the system's coherence and its metric prefixes that act as power-of-10 multipliers.

Overview

The definition and choice of units in which to express a quantity may depend on the specific situation and the intended purpose. This may be governed by regulation, contract, technical specifications or other published standards. Engineering judgment may include such factors as:

For some purposes, conversions from one system of units to another are needed to be exact, without increasing or decreasing the precision of the expressed quantity. An adaptive conversion may not produce an exactly equivalent expression. Nominal values are sometimes allowed and used.

Factor–label method

The factor–label method, also known as the unit–factor method or the unity bracket method, [1] is a widely used technique for unit conversions that uses the rules of algebra. [2] [3] [4]

The factor–label method is the sequential application of conversion factors expressed as fractions and arranged so that any dimensional unit appearing in both the numerator and denominator of any of the fractions can be cancelled out until only the desired set of dimensional units is obtained. For example, 10 miles per hour can be converted to metres per second by using a sequence of conversion factors as shown below:

Each conversion factor is chosen based on the relationship between one of the original units and one of the desired units (or some intermediary unit), before being rearranged to create a factor that cancels out the original unit. For example, as "mile" is the numerator in the original fraction and , "mile" will need to be the denominator in the conversion factor. Dividing both sides of the equation by 1 mile yields , which when simplified results in the dimensionless . Because of the identity property of multiplication, multiplying any quantity (physical or not) by the dimensionless 1 does not change that quantity. [5] Once this and the conversion factor for seconds per hour have been multiplied by the original fraction to cancel out the units mile and hour, 10 miles per hour converts to 4.4704 metres per second.

As a more complex example, the concentration of nitrogen oxides (NOx) in the flue gas from an industrial furnace can be converted to a mass flow rate expressed in grams per hour (g/h) of NOx by using the following information as shown below:

NOx concentration
= 10 parts per million by volume = 10 ppmv = 10 volumes/106 volumes
NOx molar mass
= 46 kg/kmol = 46 g/mol
Flow rate of flue gas
= 20 cubic metres per minute = 20 m3/min
The flue gas exits the furnace at 0 °C temperature and 101.325 kPa absolute pressure.
The molar volume of a gas at 0 °C temperature and 101.325 kPa is 22.414 m3/kmol.

After cancelling any dimensional units that appear both in the numerators and the denominators of the fractions in the above equation, the NOx concentration of 10 ppmv converts to mass flow rate of 24.63 grams per hour.

Checking equations that involve dimensions

The factor–label method can also be used on any mathematical equation to check whether or not the dimensional units on the left hand side of the equation are the same as the dimensional units on the right hand side of the equation. Having the same units on both sides of an equation does not ensure that the equation is correct, but having different units on the two sides (when expressed in terms of base units) of an equation implies that the equation is wrong.

For example, check the universal gas law equation of PV = nRT, when:

As can be seen, when the dimensional units appearing in the numerator and denominator of the equation's right hand side are cancelled out, both sides of the equation have the same dimensional units. Dimensional analysis can be used as a tool to construct equations that relate non-associated physico-chemical properties. The equations may reveal undiscovered or overlooked properties of matter, in the form of left-over dimensions – dimensional adjusters – that can then be assigned physical significance. It is important to point out that such 'mathematical manipulation' is neither without prior precedent, nor without considerable scientific significance. Indeed, the Planck constant, a fundamental physical constant, was 'discovered' as a purely mathematical abstraction or representation that built on the Rayleigh–Jeans law for preventing the ultraviolet catastrophe. It was assigned and ascended to its quantum physical significance either in tandem or post mathematical dimensional adjustment – not earlier.

Limitations

The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees Celsius and kelvins, there is a constant difference rather than a constant ratio, while between degrees Celsius and degrees Fahrenheit there is neither a constant difference nor a constant ratio. There is, however, an affine transform (, rather than a linear transform ) between them.

For example, the freezing point of water is 0 °C and 32 °F, and a 5 °C change is the same as a 9 °F change. Thus, to convert from units of Fahrenheit to units of Celsius, one subtracts 32 °F (the offset from the point of reference), divides by 9 °F and multiplies by 5 °C (scales by the ratio of units), and adds 0 °C (the offset from the point of reference). Reversing this yields the formula for obtaining a quantity in units of Celsius from units of Fahrenheit; one could have started with the equivalence between 100 °C and 212 °F, which yields the same formula.

Hence, to convert the numerical quantity value of a temperature T[F] in degrees Fahrenheit to a numerical quantity value T[C] in degrees Celsius, this formula may be used:

T[C] = (T[F] − 32) × 5/9.

To convert T[C] in degrees Celsius to T[F] in degrees Fahrenheit, this formula may be used:

T[F] = (T[C] × 9/5) + 32.

Example

Starting with:

replace the original unit with its meaning in terms of the desired unit , e.g. if , then:

Now and are both numerical values, so just calculate their product.

Or, which is just mathematically the same thing, multiply Z by unity, the product is still Z:

For example, you have an expression for a physical value Z involving the unit feet per second () and you want it in terms of the unit miles per hour ():

  1. Find facts relating the original unit to the desired unit:
    1 mile = 5280 feet and 1 hour = 3600 seconds
  2. Next use the above equations to construct a fraction that has a value of unity and that contains units such that, when it is multiplied with the original physical value, will cancel the original units:
  3. Last, multiply the original expression of the physical value by the fraction, called a conversion factor, to obtain the same physical value expressed in terms of a different unit. Note: since valid conversion factors are dimensionless and have a numerical value of one, multiplying any physical quantity by such a conversion factor (which is 1) does not change that physical quantity.

Or as an example using the metric system, you have a value of fuel economy in the unit litres per 100 kilometres and you want it in terms of the unit microlitres per metre:

Calculation involving non-SI Units

In the cases where non-SI units are used, the numerical calculation of a formula can be done by first working out the factor, and then plug in the numerical values of the given/known quantities.

For example, in the study of Bose–Einstein condensate, [6] atomic mass m is usually given in daltons, instead of kilograms, and chemical potential μ is often given in the Boltzmann constant times nanokelvin. The condensate's healing length is given by:

For a 23Na condensate with chemical potential of (the Boltzmann constant times) 128 nK, the calculation of healing length (in micrometres) can be done in two steps:

Calculate the factor

Assume that , this gives which is our factor.

Calculate the numbers

Now, make use of the fact that . With , .

This method is especially useful for programming and/or making a worksheet, where input quantities are taking multiple different values; For example, with the factor calculated above, it is very easy to see that the healing length of 174Yb with chemical potential 20.3 nK is

.

Software tools

There are many conversion tools. They are found in the function libraries of applications such as spreadsheets databases, in calculators, and in macro packages and plugins for many other applications such as the mathematical, scientific and technical applications.

There are many standalone applications that offer the thousands of the various units with conversions. For example, the free software movement offers a command line utility GNU units for Linux and Windows. The Unified Code for Units of Measure is also a popular option.

See also

Notes and references

  1. Béla Bodó; Colin Jones (26 June 2013). Introduction to Soil Mechanics. John Wiley & Sons. pp. 9–. ISBN   978-1-118-55388-6.
  2. Goldberg, David (2006). Fundamentals of Chemistry (5th ed.). McGraw-Hill. ISBN   978-0-07-322104-5.
  3. Ogden, James (1999). The Handbook of Chemical Engineering. Research & Education Association. ISBN   978-0-87891-982-6.
  4. "Dimensional Analysis or the Factor Label Method". Mr Kent's Chemistry Page.
  5. "Identity property of multiplication" . Retrieved 2015-09-09.
  6. Foot, C. J. (2005). Atomic physics. Oxford University Press. ISBN   978-0-19-850695-9.
Notes

    Related Research Articles

    The Beer–Lambert law is commonly applied to chemical analysis measurements to determine the concentration of chemical species that absorb light. It is often referred to as Beer's law. In physics, the Bouguer–Lambert law is an empirical law which relates the extinction or attenuation of light to the properties of the material through which the light is travelling. It had its first use in astronomical extinction. The fundamental law of extinction is sometimes called the Beer–Bouguer–Lambert law or the Bouguer–Beer–Lambert law or merely the extinction law. The extinction law is also used in understanding attenuation in physical optics, for photons, neutrons, or rarefied gases. In mathematical physics, this law arises as a solution of the BGK equation.

    In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

    In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities and units of measurement and tracking these dimensions as calculations or comparisons are performed. The term dimensional analysis is also used to refer to conversion of units from one dimensional unit to another, which can be used to evaluate scientific formulae.

    <span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

    The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities of the chemical species undergoing reduction and oxidation respectively. It was named after Walther Nernst, a German physical chemist who formulated the equation.

    In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry, who studied the topic in the early 19th century. In simple words, we can say that the partial pressure of a gas in vapour phase is directly proportional to the mole fraction of a gas in solution.

    <span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

    The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

    <span class="mw-page-title-main">Gaussian units</span> Variant of the centimetre–gram–second unit system

    Gaussian units constitute a metric system of physical units. This system is the most common of the several electromagnetic unit systems based on cgs (centimetre–gram–second) units. It is also called the Gaussian unit system, Gaussian-cgs units, or often just cgs units. The term "cgs units" is ambiguous and therefore to be avoided if possible: there are several variants of cgs with conflicting definitions of electromagnetic quantities and units.

    The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

    The Goldman–Hodgkin–Katz voltage equation, sometimes called the Goldman equation, is used in cell membrane physiology to determine the Resting potential across a cell's membrane, taking into account all of the ions that are permeant through that membrane.

    In fluid dynamics, Couette flow is the flow of a viscous fluid in the space between two surfaces, one of which is moving tangentially relative to the other. The relative motion of the surfaces imposes a shear stress on the fluid and induces flow. Depending on the definition of the term, there may also be an applied pressure gradient in the flow direction.

    In quantum mechanics, the probability current is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time. Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.

    Plasma parameters define various characteristics of a plasma, an electrically conductive collection of charged and neutral particles of various species that responds collectively to electromagnetic forces. Such particle systems can be studied statistically, i.e., their behaviour can be described based on a limited number of global parameters instead of tracking each particle separately.

    The vacuum magnetic permeability is the magnetic permeability in a classical vacuum. It is a physical constant, conventionally written as μ0. It quantifies the strength of the magnetic field induced by an electric current. Expressed in terms of SI base units, it has the unit kg⋅m⋅s−2·A−2. It can be also expressed in terms of SI derived units, N·A−2.

    In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

    <span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

    There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

    The linear attenuation coefficient, attenuation coefficient, or narrow-beam attenuation coefficient characterizes how easily a volume of material can be penetrated by a beam of light, sound, particles, or other energy or matter. A coefficient value that is large represents a beam becoming 'attenuated' as it passes through a given medium, while a small value represents that the medium had little effect on loss. The (derived) SI unit of attenuation coefficient is the reciprocal metre (m−1). Extinction coefficient is another term for this quantity, often used in meteorology and climatology. Most commonly, the quantity measures the exponential decay of intensity, that is, the value of downward e-folding distance of the original intensity as the energy of the intensity passes through a unit thickness of material, so that an attenuation coefficient of 1 m−1 means that after passing through 1 metre, the radiation will be reduced by a factor of e, and for material with a coefficient of 2 m−1, it will be reduced twice by e, or e2. Other measures may use a different factor than e, such as the decadic attenuation coefficient below. The broad-beam attenuation coefficient counts forward-scattered radiation as transmitted rather than attenuated, and is more applicable to radiation shielding. The mass attenuation coefficient is the attenuation coefficient normalized by the density of the material.

    When an electromagnetic wave travels through a medium in which it gets attenuated, it undergoes exponential decay as described by the Beer–Lambert law. However, there are many possible ways to characterize the wave and how quickly it is attenuated. This article describes the mathematical relationships among:

    Standard cubic centimeters per minute (SCCM) is a unit used to quantify the flow rate of a fluid. 1 SCCM is identical to 1 cm³STP/min. Another expression of it would be Nml/min. These standard conditions vary according to different regulatory bodies. One example of standard conditions for the calculation of SCCM is = 0 °C and = 1.01 bar and a unity compressibility factor = 1. This example is for the semi-conductor-manufacturing industry.

    Morris Muskat et al. developed the governing equations for multiphase flow in porous media as a generalisation of Darcy's equation for water flow in porous media. The porous media are usually sedimentary rocks such as clastic rocks or carbonate rocks.