Last updated
Lux meter.jpg
A lux meter for measuring illuminance
General information
Unit system SI
Unit of illuminance
1 lx in ...... is equal to ...
    SI base units     cdsrm −2
    US customary units    0.0929 fc
    CGS units   10−4  ph

The lux (symbol: lx) is the unit of illuminance, or luminous flux per unit area, in the International System of Units (SI). [1] [2] It is equal to one lumen per square metre. In photometry, this is used as a measure of the intensity, as perceived by the human eye, of light that hits or passes through a surface. It is analogous to the radiometric unit watt per square metre, but with the power at each wavelength weighted according to the luminosity function, a standardized model of human visual brightness perception. In English, "lux" is used as both the singular and plural form. [3]


The word is derived from the Latin word for "light", lux.



Illuminance is a measure of how much luminous flux is spread over a given area. One can think of luminous flux (with the unit lumen) as a measure of the total "amount" of visible light present, and the illuminance as a measure of the intensity of illumination on a surface. A given amount of light will illuminate a surface more dimly if it is spread over a larger area, so illuminance is inversely proportional to area when the luminous flux is held constant.

One lux is equal to one lumen per square metre:

1 lx = 1 lm/m2 = 1  cd·sr/m2.

A flux of 1000 lumens, spread uniformly over an area of 1 square metre, lights up that square metre with an illuminance of 1000 lux. However, the same 1000 lumens spread out over 10 square metres produces a dimmer illuminance of only 100 lux.

Achieving an illuminance of 500 lx might be possible in a home kitchen with a single fluorescent light fixture with an output of 12000 lumens. To light a factory floor with dozens of times the area of the kitchen would require dozens of such fixtures. Thus, lighting a larger area to the same illuminance (lux) requires a greater luminous flux (lumen).

As with other named SI units, SI prefixes can be used. For example, 1 kilolux (klx) is 1000 lx.

Here are some examples of the illuminance provided under various conditions:

Illuminance (lux)Surfaces illuminated by
0.0001Moonless, overcast night sky (starlight) [4]
0.002Moonless clear night sky with airglow [4]
0.05–0.3Full moon on a clear night [5]
3.4Dark limit of civil twilight under a clear sky [6]
20–50Public areas with dark surroundings [7]
50Family living room lights (Australia, 1998) [8]
80Office building hallway/toilet lighting [9] [10]
100Very dark overcast day [4]
150Train station platforms [11]
320–500Office lighting [8] [12] [13] [14]
400 Sunrise or sunset on a clear day.
1000Overcast day; [4] typical TV studio lighting
10,000–25,000Full daylight (not direct sun) [4]
32,000–100,000Direct sunlight

The illuminance provided by a light source on a surface perpendicular to the direction to the source is a measure of the strength of that source as perceived from that location. For instance, a star of apparent magnitude 0 provides 2.08 microlux (μlx) at the Earth's surface. [15] A barely perceptible magnitude 6 star provides 8 nanolux (nlx). [16] The unobscured Sun provides an illumination of up to 100 kilolux (klx) on the Earth's surface, the exact value depending on time of year and atmospheric conditions. This direct normal illuminance is related to the solar illuminance constant Esc, equal to 128000 lux (see Sunlight and Solar constant).

The illuminance on a surface depends on how the surface is tilted with respect to the source. For example, a pocket flashlight aimed at a wall will produce a given level of illumination if aimed perpendicular to the wall, but if the flashlight is aimed at increasing angles to the perpendicular (maintaining the same distance), the illuminated spot becomes larger and so is less highly illuminated. When a surface is tilted at an angle to a source, the illumination provided on the surface is reduced because the tilted surface subtends a smaller solid angle from the source, and therefore it receives less light. For a point source, the illumination on the tilted surface is reduced by a factor equal to the cosine of the angle between a ray coming from the source and the normal to the surface. [17] In practical lighting problems, given information on the way light is emitted from each source and the distance and geometry of the lighted area, a numerical calculation can be made of the illumination on a surface by adding the contributions of every point on every light source.

Relationship between illuminance and irradiance

Like all photometric units, the lux has a corresponding "radiometric" unit. The difference between any photometric unit and its corresponding radiometric unit is that radiometric units are based on physical power, with all wavelengths being weighted equally, while photometric units take into account the fact that the human eye's image-forming visual system is more sensitive to some wavelengths than others, and accordingly every wavelength is given a different weight. The weighting factor is known as the luminosity function.

The lux is one lumen per square metre (lm/m2), and the corresponding radiometric unit, which measures irradiance, is the watt per square metre (W/m2). There is no single conversion factor between lux and W/m2; there is a different conversion factor for every wavelength, and it is not possible to make a conversion unless one knows the spectral composition of the light.

The peak of the luminosity function is at 555  nm (green); the eye's image-forming visual system is more sensitive to light of this wavelength than any other. For monochromatic light of this wavelength, the amount of illuminance for a given amount of irradiance is maximum: 683.002 lx per 1 W/m2; the irradiance needed to make 1 lx at this wavelength is about 1.464  mW/m2. Other wavelengths of visible light produce fewer lux per watt-per-meter-squared. The luminosity function falls to zero for wavelengths outside the visible spectrum.

For a light source with mixed wavelengths, the number of lumens per watt can be calculated by means of the luminosity function. In order to appear reasonably "white", a light source cannot consist solely of the green light to which the eye's image-forming visual photoreceptors are most sensitive, but must include a generous mixture of red and blue wavelengths, to which they are much less sensitive.

This means that white (or whitish) light sources produce far fewer lumens per watt than the theoretical maximum of 683.002 lm/W. The ratio between the actual number of lumens per watt and the theoretical maximum is expressed as a percentage known as the luminous efficiency. For example, a typical incandescent light bulb has a luminous efficiency of only about 2%.

In reality, individual eyes vary slightly in their luminosity functions. However, photometric units are precisely defined and precisely measurable. They are based on an agreed-upon standard luminosity function based on measurements of the spectral characteristics of image-forming visual photoreception in many individual human eyes.

Use in video-camera specifications

Specifications for video cameras such as camcorders and surveillance cameras often include a minimal illuminance level in lux at which the camera will record a satisfactory image.[ citation needed ] A camera with good low-light capability will have a lower lux rating. Still cameras do not use such a specification, since longer exposure times can generally be used to make pictures at very low illuminance levels, as opposed to the case in video cameras, where a maximal exposure time is generally set by the frame rate.

Non-SI units of illuminance

The corresponding unit in English and American traditional units is the foot-candle. One foot candle is about 10.764 lx. Since one foot-candle is the illuminance cast on a surface by a one-candela source one foot away, a lux could be thought of as a "metre-candle", although this term is discouraged because it does not conform to SI standards for unit names.

One phot  (ph) equals 10 kilolux (10 klx).

One nox (nx) equals 1 millilux (1 mlx).[ citation needed ]

In astronomy, apparent magnitude is a measure of the illuminance of a star on the Earth's atmosphere. A star with apparent magnitude 0 is 2.54 microlux outside the earth's atmosphere, and 82% of that (2.08 microlux) under clear skies. [15] A magnitude 6 star (just barely visible under good conditions) would be 8.3 nanolux. A standard candle (one candela) a kilometre away would provide an illuminance of 1 microlux—about the same as a magnitude 1 star.

Legacy Unicode symbol

Unicode includes a symbol for "lx": U+33D3SQUARE LX. It is a legacy code to accommodate old code pages in some Asian languages. Use of this code is not recommended in new documents.

SI photometry units

QuantityUnit Dimension Notes
NameSymbol [nb 1] NameSymbolSymbol [nb 2]
Luminous energy Qv [nb 3] lumen second lm⋅sTJThe lumen second is sometimes called the talbot.
Luminous flux, luminous powerΦ v [nb 3] lumen (= candela steradian)lm (= cd⋅sr)JLuminous energy per unit time
Luminous intensity Iv candela (= lumen per steradian) cd (= lm/sr)JLuminous flux per unit solid angle
Luminance Lv candela per square metre cd/m2 (= lm/(sr⋅m2))L−2JLuminous flux per unit solid angle per unit projected source area. The candela per square metre is sometimes called the nit .
Illuminance Ev lux (= lumen per square metre) lx (= lm/m2)L−2JLuminous flux incident on a surface
Luminous exitance, luminous emittanceMvlumen per square metrelm/m2L−2JLuminous flux emitted from a surface
Luminous exposure Hv lux second lx⋅sL−2TJTime-integrated illuminance
Luminous energy densityωvlumen second per cubic metrelm⋅s/m3L−3TJ
Luminous efficacy (of radiation)Klumen per watt lm/W M−1L−2T3JRatio of luminous flux to radiant flux
Luminous efficacy (of a source)η [nb 3] lumen per watt lm/W M−1L−2T3JRatio of luminous flux to power consumption
Luminous efficiency, luminous coefficientV1Luminous efficacy normalized by the maximum possible efficacy
See also: SI  · Photometry  · Radiometry
  1. Standards organizations recommend that photometric quantities be denoted with a subscript "v" (for "visual") to avoid confusion with radiometric or photon quantities. For example: USA Standard Letter Symbols for Illuminating Engineering USAS Z7.1-1967, Y10.18-1967
  2. The symbols in this column denote dimensions; "L", "T" and "J" are for length, time and luminous intensity respectively, not the symbols for the units litre, tesla and joule.
  3. 1 2 3 Alternative symbols sometimes seen: W for luminous energy, P or F for luminous flux, and ρ for luminous efficacy of a source.

See also

Notes and references

  1. SI Derived Units, National Institute of Standards and Technology.
  2. "Lux". Lighting / Radiation, quantities and units. International Electrotechnical Commission. 1987. Retrieved 30 November 2019.
  3. NIST Guide to SI Units. Chapter 9 – Rules and Style Conventions for Spelling Unit Names, National Institute of Standards and Technology.
  4. 1 2 3 4 5 Schlyter, Paul (1997–2009). "Radiometry and photometry in astronomy".
    Starlight illuminance coincides with the human eye's minimum illuminance while moonlight coincides with the human eye's minimum colour vision illuminance (IEE Reviews, 1972, page 1183).
  5. Kyba, Christopher C. M.; Mohar, Andrej; Posch, Thomas (1 February 2017). "How bright is moonlight?" (PDF). Astronomy & Geophysics. 58 (1): 1.31–1.32. doi:10.1093/astrogeo/atx025.
  6. "Electro-Optics Handbook" (pdf). p. 63. Retrieved 2 April 2012.[ permanent dead link ]
  7. "NOAO Common and Recommended Light Levels Indoor" (PDF). Archived from the original (PDF) on 6 July 2021. Retrieved 13 November 2016.
  8. 1 2 Pears, Alan (June 1998). "Chapter 7: Appliance technologies and scope for emission reduction". Strategic Study of Household Energy and Greenhouse Issues (PDF). Sustainable Solutions Pty Ltd. Department of Industry and Science, Commonwealth of Australia. p. 61. Archived from the original (PDF) on 2 March 2011. Retrieved 26 June 2008.
  9. Australian Greenhouse Office (May 2005). "Chapter 5: Assessing lighting savings". Working Energy Resource and Training Kit: Lighting. Archived from the original on 15 April 2007. Retrieved 17 March 2007.
  10. "Low-Light Performance Calculator". Archived from the original on 15 June 2013. Retrieved 27 September 2010.
  11. Darlington, Paul (5 December 2017). "London Underground: Keeping the lights on". Rail Engineer. Archived from the original on 16 November 2018. Retrieved 20 December 2017.
  12. "How to use a lux meter (Australian recommendation)" (PDF). Sustainability Victoria. April 2010. Archived from the original (PDF) on 7 July 2011.
  13. "Illumination. - 1926.56". Regulations (Standards - 29 CFR). Occupational Safety and Health Administration, US Dept. of Labor. Archived from the original on 8 May 2009.
  14. European law UNI EN 12464
  15. 1 2 Schlyter, Section 7.
  16. Schlyter, Section 14.
  17. Jack L. Lindsey, Applied Illumination Engineering, The Fairmont Press, Inc., 1997 ISBN   0881732125 page 218

Related Research Articles

<span class="mw-page-title-main">Candela</span> SI unit of luminous intensity

The candela is the unit of luminous intensity in the International System of Units (SI). It measures luminous power per unit solid angle emitted by a light source in a particular direction. Luminous intensity is analogous to radiant intensity, but instead of simply adding up the contributions of every wavelength of light in the source's spectrum, the contribution of each wavelength is weighted by the standard luminosity function. A common wax candle emits light with a luminous intensity of roughly one candela. If emission in some directions is blocked by an opaque barrier, the emission would still be approximately one candela in the directions that are not obscured.

<span class="mw-page-title-main">Luminance</span> Photometric measure

Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflected from a particular area, and falls within a given solid angle.

<span class="mw-page-title-main">Luminosity</span> Measurement of radiant electromagnetic power emitted by an object

Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical object.

In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.

<span class="mw-page-title-main">Photometry (optics)</span> Science of the measurement of visible light

Photometry is the science of the measurement of light, in terms of its perceived brightness to the human eye. It is distinct from radiometry, which is the science of measurement of radiant energy in terms of absolute power. In modern photometry, the radiant power at each wavelength is weighted by a luminosity function that models human brightness sensitivity. Typically, this weighting function is the photopic sensitivity function, although the scotopic function or other functions may also be applied in the same way.

<span class="mw-page-title-main">Foot-candle</span>

A foot-candle is a non-SI unit of illuminance or light intensity. The foot-candle is defined as one lumen per square foot. This unit is commonly used in lighting layouts in parts of the world where United States customary units are used, mainly the United States. Nearly all of the world uses the corresponding SI derived unit lux, defined as one lumen per square meter.

In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre. It is a directional quantity: the radiance of a surface depends on the direction from which it is being observed.

In radiometry, irradiance is the radiant flux received by a surface per unit area. The SI unit of irradiance is the watt per square metre (W⋅m−2). The CGS unit erg per square centimetre per second (erg⋅cm−2⋅s−1) is often used in astronomy. Irradiance is often called intensity, but this term is avoided in radiometry where such usage leads to confusion with radiant intensity. In astrophysics, irradiance is called radiant flux.

<span class="mw-page-title-main">Luminous flux</span> Perceived Luminous Power

In photometry, luminous flux or luminous power is the measure of the perceived power of light. It differs from radiant flux, the measure of the total power of electromagnetic radiation, in that luminous flux is adjusted to reflect the varying sensitivity of the human eye to different wavelengths of light.

<span class="mw-page-title-main">Illuminance</span>

In photometry, illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of how much the incident light illuminates the surface, wavelength-weighted by the luminosity function to correlate with human brightness perception. Similarly, luminous emittance is the luminous flux per unit area emitted from a surface. Luminous emittance is also known as luminous exitance.

A phot (ph) is a photometric unit of illuminance, or luminous flux through an area. It is not an SI unit but rather is associated with the older centimetre–gram–second system of units. The name was coined by André Blondel in 1921.

The lumen is the unit of luminous flux, a measure of the total quantity of visible light emitted by a source per unit of time, in the International System of Units (SI). Luminous flux differs from power in that radiant flux includes all electromagnetic waves emitted, while luminous flux is weighted according to a model of the human eye's sensitivity to various wavelengths. One lux is one lumen per square metre.

In radiometry, radiant intensity is the radiant flux emitted, reflected, transmitted or received, per unit solid angle, and spectral intensity is the radiant intensity per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. These are directional quantities. The SI unit of radiant intensity is the watt per steradian, while that of spectral intensity in frequency is the watt per steradian per hertz and that of spectral intensity in wavelength is the watt per steradian per metre —commonly the watt per steradian per nanometre. Radiant intensity is distinct from irradiance and radiant exitance, which are often called intensity in branches of physics other than radiometry. In radio-frequency engineering, radiant intensity is sometimes called radiation intensity.

<span class="mw-page-title-main">Spectral power distribution</span>

In radiometry, photometry, and color science, a spectral power distribution (SPD) measurement describes the power per unit area per unit wavelength of an illumination. More generally, the term spectral power distribution can refer to the concentration, as a function of wavelength, of any radiometric or photometric quantity.

Luminous efficacy is a measure of how well a light source produces visible light. It is the ratio of luminous flux to power, measured in lumens per watt in the International System of Units (SI). Depending on context, the power can be either the radiant flux of the source's output, or it can be the total power consumed by the source. Which sense of the term is intended must usually be inferred from the context, and is sometimes unclear. The former sense is sometimes called luminous efficacy of radiation, and the latter luminous efficacy of a light source or overall luminous efficacy.

A foot-lambert or footlambert is a unit of luminance in United States customary units and some other unit systems. A foot-lambert equals 1/π or 0.3183 candela per square foot, or 3.426 candela per square meter. The foot-lambert is named after Johann Heinrich Lambert (1728–1777), a Swiss-German mathematician, physicist and astronomer. It is rarely used by electrical and lighting engineers, who prefer the candela per square foot or candela per square meter units.

In photometry, luminous energy is the perceived energy of light. This is sometimes called the quantity of light. Luminous energy is not the same as radiant energy, the corresponding objective physical quantity. This is because the human eye can only see light in the visible spectrum and has different sensitivities to light of different wavelengths within the spectrum. When adapted for bright conditions, the eye is most sensitive to light at a wavelength of 555 nm. Light with a given amount of radiant energy will have more luminous energy if the wavelength is 555 nm than if the wavelength is longer or shorter. Light whose wavelength is well outside the visible spectrum has a luminous energy of zero, regardless of the amount of radiant energy present.

Several measures of light are commonly known as intensity:

In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiant flux is the watt (W), one joule per second, while that of spectral flux in frequency is the watt per hertz and that of spectral flux in wavelength is the watt per metre —commonly the watt per nanometre.

In radiometry, radiant exitance or radiant emittance is the radiant flux emitted by a surface per unit area, whereas spectral exitance or spectral emittance is the radiant exitance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. This is the emitted component of radiosity. The SI unit of radiant exitance is the watt per square metre, while that of spectral exitance in frequency is the watt per square metre per hertz (W·m−2·Hz−1) and that of spectral exitance in wavelength is the watt per square metre per metre (W·m−3)—commonly the watt per square metre per nanometre. The CGS unit erg per square centimeter per second is often used in astronomy. Radiant exitance is often called "intensity" in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.