Illuminance

Last updated
Illuminance
Common symbols
Ev
SI unit lux
Other units
phot, foot-candle
In SI base units cd·sr·m −2
Dimension
Illuminance diagram with units and terminology Illuminance Diagram.tif
Illuminance diagram with units and terminology

In photometry, illuminance is the total luminous flux incident on a surface, per unit area. [1] It is a measure of how much the incident light illuminates the surface, wavelength-weighted by the luminosity function to correlate with human brightness perception. [2] Similarly, luminous emittance is the luminous flux per unit area emitted from a surface. Luminous emittance is also known as luminous exitance. [3] [4]

Contents

In SI units illuminance is measured in lux (lx), or equivalently in lumens per square metre (lm·m −2). [2] Luminous exitance is measured in lm·m−2 only, not lux. [4] In the CGS system, the unit of illuminance is the phot, which is equal to 10000 lux. The foot-candle is a non-metric unit of illuminance that is used in photography. [5]

Illuminance was formerly often called brightness, but this leads to confusion with other uses of the word, such as to mean luminance. "Brightness" should never be used for quantitative description, but only for nonquantitative references to physiological sensations and perceptions of light.

The human eye is capable of seeing somewhat more than a 2 trillion-fold range. The presence of white objects is somewhat discernible under starlight, at 5×10−5 lux (50 μlx), while at the bright end, it is possible to read large text at 108 lux (100 Mlx), or about 1000 times that of direct sunlight, although this can be very uncomfortable and cause long-lasting afterimages.[ citation needed ]

Common illuminance levels

A lux meter for measuring illuminances in work environments Lux meter.jpg
A lux meter for measuring illuminances in work environments
Lighting condition Foot-candles Lux
Sunlight10,000 [6] 100,000
Shade on a sunny day1,00010,000
Overcast day1001,000
Very dark day10100
Twilight110
Deep twilight0.11
Full moon0.010.1
Quarter moon0.0010.01
Starlight0.00010.001
Overcast night0.000010.0001

Astronomy

In astronomy, the illuminance stars cast on the Earth's atmosphere is used as a measure of their brightness. The usual units are apparent magnitudes in the visible band. [7] V-magnitudes can be converted to lux using the formula [8] where Ev is the illuminance in lux, and mv is the apparent magnitude. The reverse conversion is

Relation to luminance

Comparison of photometric and radiometric quantities Photometry radiometry units.svg
Comparison of photometric and radiometric quantities

The luminance of a reflecting surface is related to the illuminance it receives: where the integral covers all the directions of emission ΩΣ, and

In the case of a perfectly diffuse reflector (also called a Lambertian reflector), the luminance is isotropic, per Lambert's cosine law. Then the relationship is simply

See also

Related Research Articles

<span class="mw-page-title-main">Candela</span> SI unit of luminous intensity

The candela is the unit of luminous intensity in the International System of Units (SI). It measures luminous power per unit solid angle emitted by a light source in a particular direction. Luminous intensity is analogous to radiant intensity, but instead of simply adding up the contributions of every wavelength of light in the source's spectrum, the contribution of each wavelength is weighted by the luminous efficiency function, the model of the sensitivity of the human eye to different wavelengths, standardized by the CIE and ISO. A common wax candle emits light with a luminous intensity of roughly one candela. If emission in some directions is blocked by an opaque barrier, the emission would still be approximately one candela in the directions that are not obscured.

<span class="mw-page-title-main">Luminance</span> Photometric measure

Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflected from a particular area, and falls within a given solid angle.

<span class="mw-page-title-main">Brightness</span> Perception of light level

Brightness is an attribute of visual perception in which a source appears to be radiating or reflecting light. In other words, brightness is the perception elicited by the luminance of a visual target. The perception is not linear to luminance, and relies on the context of the viewing environment.

<span class="mw-page-title-main">Luminosity</span> Measurement of radiant electromagnetic power emitted by an object

Luminosity is an absolute measure of radiated electromagnetic energy (light) per unit time, and is synonymous with the radiant power emitted by a light-emitting object. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical objects.

<span class="mw-page-title-main">Stefan–Boltzmann law</span> Physical law on the emissive power of black body

The Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan, who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically.

The candela per square metre is the unit of luminance in the International System of Units (SI). The unit is based on the candela, the SI unit of luminous intensity, and the square metre, the SI unit of area.

<span class="mw-page-title-main">Lux</span> SI derived unit of illuminance

The lux is the unit of illuminance, or luminous flux per unit area, in the International System of Units (SI). It is equal to one lumen per square metre. In photometry, this is used as a measure of the intensity, as perceived by the human eye, of light that hits or passes through a surface. It is analogous to the radiometric unit watt per square metre, but with the power at each wavelength weighted according to the luminosity function, a model of human visual brightness perception, standardized by the CIE and ISO. In English, "lux" is used as both the singular and plural form. The word is derived from the Latin word for "light", lux.

<span class="mw-page-title-main">Exposure value</span> Measure of illuminance for a combination of a cameras shutter speed and f-number

In photography, exposure value (EV) is a number that represents a combination of a camera's shutter speed and f-number, such that all combinations that yield the same exposure have the same EV. Exposure value is also used to indicate an interval on the photographic exposure scale, with a difference of 1 EV corresponding to a standard power-of-2 exposure step, commonly referred to as a stop.

<span class="mw-page-title-main">Transmittance</span> Effectiveness of a material in transmitting radiant energy

In optical physics, transmittance of the surface of a material is its effectiveness in transmitting radiant energy. It is the fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is the ratio of the transmitted to incident electric field.

In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre. It is a directional quantity: the radiance of a surface depends on the direction from which it is being observed.

In radiometry, irradiance is the radiant flux received by a surface per unit area. The SI unit of irradiance is the watt per square metre (W⋅m−2). The CGS unit erg per square centimetre per second (erg⋅cm−2⋅s−1) is often used in astronomy. Irradiance is often called intensity, but this term is avoided in radiometry where such usage leads to confusion with radiant intensity. In astrophysics, irradiance is called radiant flux.

A phot (ph) is a photometric unit of illuminance, or luminous flux through an area. It is not an SI unit but rather is associated with the older centimetre–gram–second system of units. The name was coined by André Blondel in 1921.

<span class="mw-page-title-main">Spectral power distribution</span> Measurement describing the power of an illumination

In radiometry, photometry, and color science, a spectral power distribution (SPD) measurement describes the power per unit area per unit wavelength of an illumination. More generally, the term spectral power distribution can refer to the concentration, as a function of wavelength, of any radiometric or photometric quantity.

<span class="mw-page-title-main">Etendue</span> Measure of the "spread" of light in an optical system

Etendue or étendue is a property of light in an optical system, which characterizes how "spread out" the light is in area and angle. It corresponds to the beam parameter product (BPP) in Gaussian beam optics. Other names for etendue include acceptance, throughput, light grasp, light-gathering power, optical extent, and the AΩ product. Throughput and AΩ product are especially used in radiometry and radiative transfer where it is related to the view factor. It is a central concept in nonimaging optics.

A foot-lambert or footlambert is a unit of luminance in United States customary units and some other unit systems. A foot-lambert equals 1/π or 0.3183 candela per square foot, or 3.426 candela per square meter. The foot-lambert is named after Johann Heinrich Lambert (1728–1777), a Swiss-German mathematician, physicist and astronomer. It is rarely used by electrical and lighting engineers, who prefer the candela per square foot or candela per square meter units.

The troland, named after Leonard T. Troland, is a unit of conventional retinal illuminance. It is meant as a method for correcting photometric measurements of luminance values impinging on the human eye by scaling them by the effective pupil size. It is equal to retinal illuminance produced by a surface whose luminance is one nit when the apparent area of the entrance pupil of the eye is 1 square millimeter.

In photometry, luminous energy is the perceived energy of light. This is sometimes called the quantity of light. Luminous energy is not the same as radiant energy, the corresponding objective physical quantity. This is because the human eye can only see light in the visible spectrum and has different sensitivities to light of different wavelengths within the spectrum. When adapted for bright conditions, the eye is most sensitive to light at a wavelength of 555 nm. Light with a given amount of radiant energy will have more luminous energy if the wavelength is 555 nm than if the wavelength is longer or shorter. Light whose wavelength is well outside the visible spectrum has a luminous energy of zero, regardless of the amount of radiant energy present.

<span class="mw-page-title-main">Radiant flux</span> Measure of radiant energy over time

In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiant flux is the watt (W), one joule per second, while that of spectral flux in frequency is the watt per hertz and that of spectral flux in wavelength is the watt per metre —commonly the watt per nanometre.

In radiometry, radiant exitance or radiant emittance is the radiant flux emitted by a surface per unit area, whereas spectral exitance or spectral emittance is the radiant exitance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. This is the emitted component of radiosity. The SI unit of radiant exitance is the watt per square metre, while that of spectral exitance in frequency is the watt per square metre per hertz (W·m−2·Hz−1) and that of spectral exitance in wavelength is the watt per square metre per metre (W·m−3)—commonly the watt per square metre per nanometre. The CGS unit erg per square centimeter per second is often used in astronomy. Radiant exitance is often called "intensity" in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.

In radiometry, radiosity is the radiant flux leaving a surface per unit area, and spectral radiosity is the radiosity of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiosity is the watt per square metre, while that of spectral radiosity in frequency is the watt per square metre per hertz (W·m−2·Hz−1) and that of spectral radiosity in wavelength is the watt per square metre per metre (W·m−3)—commonly the watt per square metre per nanometre. The CGS unit erg per square centimeter per second is often used in astronomy. Radiosity is often called intensity in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.

References

  1. "Illuminance, 17-21-060". CIE S 017:2020 ILV: International Lighting Vocabulary, 2nd edition. CIE - International Commission on Illumination. 2020. Retrieved 20 April 2023.
  2. 1 2 International Electrotechnical Commission (IEC): International Electrotechnical Vocabulary. ref. 845-21-060, illuminance
  3. Luminous exitance Drdrbill.com
  4. 1 2 International Electrotechnical Commission (IEC): International Electrotechnical Vocabulary. ref. 845-21-081, luminous exitance
  5. One phot = 929.030400001 foot-candles, according to http://www.unitconversion.org/unit_converter/illumination.html
  6. "Illuminance - Recommended Light Level". The Engineering ToolBox. Archived from the original on April 3, 2022. Retrieved July 7, 2022.
  7. Schlyter, Paul. "Radiometry and photometry in astronomy FAQ, section 7".
  8. "Formulae for converting to and from astronomy-relevant units" (PDF). Archived from the original (PDF) on December 2, 2013. Retrieved Nov 23, 2013.

QuantityUnitDimension
[nb 1]
Notes
NameSymbol [nb 2] NameSymbol
Luminous energy Qv [nb 3] lumen second lm⋅sTJThe lumen second is sometimes called the talbot.
Luminous flux, luminous powerΦ v [nb 3] lumen (= candela steradian)lm (= cd⋅sr)JLuminous energy per unit time
Luminous intensity Iv candela (= lumen per steradian) cd (= lm/sr)JLuminous flux per unit solid angle
Luminance Lv candela per square metre cd/m2 (= lm/(sr⋅m2))L−2JLuminous flux per unit solid angle per unit projected source area. The candela per square metre is sometimes called the nit .
Illuminance Ev lux (= lumen per square metre) lx (= lm/m2)L−2JLuminous flux incident on a surface
Luminous exitance, luminous emittanceMvlumen per square metrelm/m2L−2JLuminous flux emitted from a surface
Luminous exposure Hv lux second lx⋅sL−2TJTime-integrated illuminance
Luminous energy densityωvlumen second per cubic metrelm⋅s/m3L−3TJ
Luminous efficacy (of radiation)Klumen per watt lm/W M−1L−2T3JRatio of luminous flux to radiant flux
Luminous efficacy (of a source)η [nb 3] lumen per watt lm/W M−1L−2T3JRatio of luminous flux to power consumption
Luminous efficiency, luminous coefficientV1Luminous efficacy normalized by the maximum possible efficacy
See also:
  1. The symbols in this column denote dimensions; "L", "T" and "J" are for length, time and luminous intensity respectively, not the symbols for the units litre, tesla and joule.
  2. Standards organizations recommend that photometric quantities be denoted with a subscript "v" (for "visual") to avoid confusion with radiometric or photon quantities. For example: USA Standard Letter Symbols for Illuminating Engineering USAS Z7.1-1967, Y10.18-1967
  3. 1 2 3 Alternative symbols sometimes seen: W for luminous energy, P or F for luminous flux, and ρ for luminous efficacy of a source.