Luminous flux

Last updated
Luminous flux
Common symbols
Φ v
SI unit lumen
In SI base units cdsr
Dimension
Photopic (black line) and scotopic (green line) luminosity functions. The photopic includes the CIE 1931 standard (solid), the Judd-Vos 1978 modified data (dashed), and the Sharpe, Stockman, Jagla & Jagle 2005 data (dotted). The horizontal axis is wavelength in nm. Luminosity.png
Photopic (black line) and scotopic (green line) luminosity functions. The photopic includes the CIE 1931 standard (solid), the Judd-Vos 1978 modified data (dashed), and the Sharpe, Stockman, Jagla & Jägle 2005 data (dotted). The horizontal axis is wavelength in nm.
Integrating sphere used for measuring the luminous flux of a light source Luminance Chamber.jpg
Integrating sphere used for measuring the luminous flux of a light source

In photometry, luminous flux or luminous power[ citation needed ] is the measure of the perceived power of light. It differs from radiant flux, the measure of the total power of electromagnetic radiation (including infrared, ultraviolet, and visible light), in that luminous flux is adjusted to reflect the varying sensitivity of the human eye to different wavelengths of light.

Contents

Units

The SI unit of luminous flux is the lumen (lm). One lumen is defined as the luminous flux of light produced by a light source that emits one candela of luminous intensity over a solid angle of one steradian.

In other systems of units, luminous flux may have units of power.

Weighting

The luminous flux accounts for the sensitivity of the eye by weighting the power at each wavelength with the luminosity function, which represents the eye's response to different wavelengths. The luminous flux is a weighted sum of the power at all wavelengths in the visible band. Light outside the visible band does not contribute. The ratio of the total luminous flux to the radiant flux is called the luminous efficacy. This model of the human visual brightness perception, is standardized by the CIE and ISO. [5]

Context

Luminous flux is often used as an objective measure of the useful light emitted by a light source, and is typically reported on the packaging for light bulbs, although it is not always prominent. Consumers commonly compare the luminous flux of different light bulbs since it provides an estimate of the apparent amount of light the bulb will produce, and a lightbulb with a higher ratio of luminous flux to consumed power is more efficient.

Luminous flux is not used to compare brightness, as this is a subjective perception which varies according to the distance from the light source and the angular spread of the light from the source.

Measurement

Luminous flux of artificial light sources is typically measured using an integrating sphere, or a goniophotometer outfitted with a photometer or a spectroradiometer. [6]

QuantityUnitDimension
[nb 1]
Notes
NameSymbol [nb 2] NameSymbol
Luminous energy Qv [nb 3] lumen second lm⋅sTJThe lumen second is sometimes called the talbot.
Luminous flux, luminous powerΦ v [nb 3] lumen (= candela steradian)lm (= cd⋅sr)JLuminous energy per unit time
Luminous intensity Iv candela (= lumen per steradian) cd (= lm/sr)JLuminous flux per unit solid angle
Luminance Lv candela per square metre cd/m2 (= lm/(sr⋅m2))L−2JLuminous flux per unit solid angle per unit projected source area. The candela per square metre is sometimes called the nit .
Illuminance Ev lux (= lumen per square metre) lx (= lm/m2)L−2JLuminous flux incident on a surface
Luminous exitance, luminous emittanceMvlumen per square metrelm/m2L−2JLuminous flux emitted from a surface
Luminous exposure Hv lux second lx⋅sL−2TJTime-integrated illuminance
Luminous energy densityωvlumen second per cubic metrelm⋅s/m3L−3TJ
Luminous efficacy (of radiation)Klumen per watt lm/W M−1L−2T3JRatio of luminous flux to radiant flux
Luminous efficacy (of a source)η [nb 3] lumen per watt lm/W M−1L−2T3JRatio of luminous flux to power consumption
Luminous efficiency, luminous coefficientV1Luminous efficacy normalized by the maximum possible efficacy
See also:
  1. The symbols in this column denote dimensions; "L", "T" and "J" are for length, time and luminous intensity respectively, not the symbols for the units litre, tesla and joule.
  2. Standards organizations recommend that photometric quantities be denoted with a subscript "v" (for "visual") to avoid confusion with radiometric or photon quantities. For example: USA Standard Letter Symbols for Illuminating Engineering USAS Z7.1-1967, Y10.18-1967
  3. 1 2 3 Alternative symbols sometimes seen: W for luminous energy, P or F for luminous flux, and ρ for luminous efficacy of a source.

Relationship to luminous intensity

Comparison of photometric and radiometric quantities Photometry radiometry units.svg
Comparison of photometric and radiometric quantities

Luminous flux (in lumens) is a measure of the total amount of light a lamp puts out. The luminous intensity (in candelas) is a measure of how bright the beam in a particular direction is. If a lamp has a 1 lumen bulb and the optics of the lamp are set up to focus the light evenly into a 1 steradian beam, then the beam would have a luminous intensity of 1 candela. If the optics were changed to concentrate the beam into 1/2 steradian then the source would have a luminous intensity of 2 candela. The resulting beam is narrower and brighter, however the luminous flux remains the same.

Examples

Table of comparative luminous flux of several light sources [7] [8] [9]
SourceLuminous flux (lumens)
37 mW "Superbright" white LED 0.20
15 mW green laser (532 nm wavelength)8.4
1 W high-output white LED25–120
Kerosene lantern 100
40 W incandescent lamp at 230 volts325
7 W high-output white LED450
6 W COB filament LED lamp600
18 W fluorescent lamp 1250
100 W incandescent lamp1750
40 W fluorescent lamp2800
35 W xenon bulb2200–3200
100 W fluorescent lamp8000
127 W low pressure sodium vapor lamp 25,000
400 W metal-halide lamp 40,000
Values are given for newly manufactured sources. The output from many sources decreases significantly over their lifetime.

Related Research Articles

<span class="mw-page-title-main">Candela</span> SI unit of luminous intensity

The candela is the unit of luminous intensity in the International System of Units (SI). It measures luminous power per unit solid angle emitted by a light source in a particular direction. Luminous intensity is analogous to radiant intensity, but instead of simply adding up the contributions of every wavelength of light in the source's spectrum, the contribution of each wavelength is weighted by the luminous efficiency function, the model of the sensitivity of the human eye to different wavelengths, standardized by the CIE and ISO. A common wax candle emits light with a luminous intensity of roughly one candela. If emission in some directions is blocked by an opaque barrier, the emission would still be approximately one candela in the directions that are not obscured.

<span class="mw-page-title-main">Luminance</span> Photometric measure

Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflected from a particular area, and falls within a given solid angle.

<span class="mw-page-title-main">Lux</span> SI derived unit of illuminance

The lux is the unit of illuminance, or luminous flux per unit area, in the International System of Units (SI). It is equal to one lumen per square metre. In photometry, this is used as a measure of the irradiance, as perceived by the spectrally unequally responding human eye, of light that hits or passes through a surface. It is analogous to the radiometric unit watt per square metre, but with the power at each wavelength weighted according to the luminosity function, a model of human visual brightness perception, standardized by the CIE and ISO. In English, "lux" is used as both the singular and plural form. The word is derived from the Latin word for "light", lux.

<span class="mw-page-title-main">Flashlight</span> Portable hand-held electric light

A flashlight or electric torch, usually shortened to torch, is a portable hand-held electric lamp. Formerly, the light source typically was a miniature incandescent light bulb, but these have been displaced by light-emitting diodes (LEDs) since the early 2000s. A typical flashlight consists of the light source mounted in a reflector, a transparent cover to protect the light source and reflector, a battery, and a switch, all enclosed in a case.

<span class="mw-page-title-main">Luminous efficiency function</span> Description of the average spectral sensitivity of human visual perception of brightness

A luminous efficiency function or luminosity function represents the average spectral sensitivity of human visual perception of light. It is based on subjective judgements of which of a pair of different-colored lights is brighter, to describe relative sensitivity to light of different wavelengths. It is not an absolute reference to any particular individual, but is a standard observer representation of visual sensitivity of a theoretical human eye. It is valuable as a baseline for experimental purposes, and in colorimetry. Different luminous efficiency functions apply under different lighting conditions, varying from photopic in brightly lit conditions through mesopic to scotopic under low lighting conditions. When not specified, the luminous efficiency function generally refers to the photopic luminous efficiency function.

In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.

<span class="mw-page-title-main">Photometry (optics)</span> Science of the measurement of visible light

Photometry is a branch of optics that deals with measuring light in terms of its perceived brightness to the human eye. It is concerned with quantifying the amount of light that is emitted, transmitted, or received by an object or a system.

<span class="mw-page-title-main">Foot-candle</span> Unit of illuminance

A foot-candle is a non-SI unit of illuminance or light intensity. The foot-candle is defined as one lumen per square foot. This unit is commonly used in lighting layouts in parts of the world where United States customary units are used, mainly the United States. Nearly all of the world uses the corresponding SI derived unit lux, defined as one lumen per square meter.

In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre. It is a directional quantity: the radiance of a surface depends on the direction from which it is being observed.

<span class="mw-page-title-main">Illuminance</span> Luminous flux incident on a surface per area

In photometry, illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of how much the incident light illuminates the surface, wavelength-weighted by the luminosity function to correlate with human brightness perception. Similarly, luminous emittance is the luminous flux per unit area emitted from a surface. Luminous emittance is also known as luminous exitance.

<span class="mw-page-title-main">Candlepower</span> Unit of measurement

Candlepower is a unit of measurement for luminous intensity. It expresses levels of light intensity relative to the light emitted by a candle of specific size and constituents. The historical candlepower is equal to 0.981 candelas. In modern usage, candlepower is sometimes used as a synonym for candla.

<span class="mw-page-title-main">Lumen (unit)</span> SI derived unit of visible light emission

The lumen is the unit of luminous flux, a measure of the perceived power of visible light emitted by a source, in the International System of Units (SI). Luminous flux differs from power, which encompasses all electromagnetic waves emitted, including non-visible ones such as thermal radiation (infrared). By contrast, luminous flux is weighted according to a model of the human eye's sensitivity to various wavelengths; this weighting is standardized by the CIE and ISO.

In radiometry, radiant intensity is the radiant flux emitted, reflected, transmitted or received, per unit solid angle, and spectral intensity is the radiant intensity per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. These are directional quantities. The SI unit of radiant intensity is the watt per steradian, while that of spectral intensity in frequency is the watt per steradian per hertz and that of spectral intensity in wavelength is the watt per steradian per metre —commonly the watt per steradian per nanometre. Radiant intensity is distinct from irradiance and radiant exitance, which are often called intensity in branches of physics other than radiometry. In radio-frequency engineering, radiant intensity is sometimes called radiation intensity.

<span class="mw-page-title-main">Spectral power distribution</span> Measurement describing the power of an illumination

In radiometry, photometry, and color science, a spectral power distribution (SPD) measurement describes the power per unit area per unit wavelength of an illumination. More generally, the term spectral power distribution can refer to the concentration, as a function of wavelength, of any radiometric or photometric quantity.

Luminous efficacy is a measure of how well a light source produces visible light. It is the ratio of luminous flux to power, measured in lumens per watt in the International System of Units (SI). Depending on context, the power can be either the radiant flux of the source's output, or it can be the total power consumed by the source. Which sense of the term is intended must usually be inferred from the context, and is sometimes unclear. The former sense is sometimes called luminous efficacy of radiation, and the latter luminous efficacy of a light source or overall luminous efficacy.

In photometry, luminous energy is the perceived energy of light. This is sometimes called the quantity of light. Luminous energy is not the same as radiant energy, the corresponding objective physical quantity. This is because the human eye can only see light in the visible spectrum and has different sensitivities to light of different wavelengths within the spectrum. When adapted for bright conditions, the eye is most sensitive to light at a wavelength of 555 nm. Light with a given amount of radiant energy will have more luminous energy if the wavelength is 555 nm than if the wavelength is longer or shorter. Light whose wavelength is well outside the visible spectrum has a luminous energy of zero, regardless of the amount of radiant energy present.

Several measures of light are commonly known as intensity:

Mesopic vision, sometimes also called twilight vision, is a combination of photopic and scotopic vision under low-light conditions. Mesopic levels range approximately from 0.01 to 3.0 cd/m2 in luminance. Most nighttime outdoor and street lighting conditions are in the mesopic range.

<span class="mw-page-title-main">Energy conversion efficiency</span> Ratio between the useful output and the input of a machine

Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat. The resulting value, η (eta), ranges between 0 and 1.

Lumen maintenance is the most useful gauge to determine the lifetime or useful light output rating of an LED light source. Unlike traditional light sources such as incandescent lamps, LEDs rarely fail outright and instead continue to emit light, albeit at slowly diminishing rate over time. Lumen maintenance is the luminous flux remaining at any selected elapsed operating time. Lumen depreciation is the luminous flux lost over time, and thus the complement of lumen maintenance.

References

  1. "Scotopic luminosity function".
  2. "CIE 2-deg CMFS".
  3. "Judd-Vos modified Photopic luminosity function".
  4. "Sharpe, Stockman, Jagla & Jägle (2005) 2-deg V*(l) luminous efficiency function". Archived from the original on 2007-09-27. Retrieved 2007-05-10.
  5. ISO/CIE 23539:2023 CIE TC 2-93 Photometry — The CIE system of physical photometry. ISO/CIE. 2023. doi:10.25039/IS0.CIE.23539.2023.
  6. Schneider, T.; Young, R.; Bergen, T.; Dam-Hansen, C; Goodman, T.; Jordan, W.; Lee, D.-H; Okura, T.; Sperfeld, P.; Thorseth, A; Zong, Y. (2022). CIE 250:2022 Spectroradiometric Measurement of Optical Radiation Sources. Vienna: CIE - International Commission on Illumination. ISBN   978-3-902842-23-7.
  7. Szokolay, S. V. (2008). Introduction to Architectural Science: The Basis of Sustainable Design (Second ed.). Routledge. p. 143. ISBN   9780750687041.
  8. BeLight. Vol. 3. Trendforce. 2010. pp. 10–12.
  9. Jahne, Bernd (2004). Practical Handbook on Image Processing for Scientific and Technical Applications (Second ed.). CRC. p. 111. ISBN   9780849390302.