WikiMili The Free Encyclopedia

Siemens | |
---|---|

Unit system | SI derived unit |

Unit of | Electric conductance |

Symbol | S (= Ω^{−1}) |

Named after | Ernst Werner von Siemens |

In SI base units: | kg ^{−1}⋅ m ^{−2}⋅ s ^{3}⋅ A ^{2} |

The **siemens** (symbol: S) is the derived unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is redundantly equal to the reciprocal of one ohm, and is also referred to as the * mho *. The 14th General Conference on Weights and Measures approved the addition of the siemens as a derived unit in 1971.

**SI derived units** are units of measurement derived from the seven base units specified by the International System of Units (SI). They are either dimensionless or can be expressed as a product of one or more of the base units, possibly scaled by an appropriate power of exponentiation.

In electrical engineering, **susceptance** (*B*) is the imaginary part of admittance, where the real part is conductance. The inverse of admittance is impedance, where the imaginary part is reactance and the real part is resistance. In SI units, susceptance is measured in siemens. Oliver Heaviside first defined this property in June 1887.

In electrical engineering, **admittance** is a measure of how easily a circuit or device will allow a current to flow. It is defined as the reciprocal of impedance. The SI unit of admittance is the siemens ; the older, synonymous unit is mho, and its symbol is ℧. Oliver Heaviside coined the term *admittance* in December 1887.

The unit is named after Ernst Werner von Siemens. In English, the same form *siemens* is used both for the singular and plural.^{ [1] }

**Ernst Werner Siemens** was a German inventor and industrialist. Siemens's name has been adopted as the SI unit of electrical conductance, the siemens. He was also the founder of the electrical and telecommunications company Siemens.

For a conducting element, electrical resistance *R* and electrical conductance *G* are defined as

The **electrical resistance** of an object is a measure of its opposition to the flow of electric current. The inverse quantity is **electrical conductance**, and is the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with the notion of mechanical friction. The SI unit of electrical resistance is the ohm (Ω), while electrical conductance is measured in siemens (S).

where *I* is the electric current through the object and *V* is the voltage (electrical potential difference) across the object.

**Voltage**, **electric potential difference**, **electric pressure **or **electric tension** is the difference in electric potential between two points. The difference in electric potential between two points in a static electric field is defined as the work needed per unit of charge to move a test charge between the two points. In the International System of Units, the derived unit for voltage is named *volt*. In SI units, work per unit charge is expressed as joules per coulomb, where 1 volt = 1 joule per 1 coulomb. The official SI definition for *volt* uses power and current, where 1 volt = 1 watt per 1 ampere. This definition is equivalent to the more commonly used 'joules per coulomb'. Voltage or electric potential difference is denoted symbolically by ∆*V*, but more often simply as *V*, for instance in the context of Ohm's or Kirchhoff's circuit laws.

The unit **siemens** for the conductance *G* is defined by

where Ω is the ohm, A is the ampere, and V is the volt.

The **ohm** is the SI derived unit of electrical resistance, named after German physicist Georg Simon Ohm. Although several empirically derived standard units for expressing electrical resistance were developed in connection with early telegraphy practice, the British Association for the Advancement of Science proposed a unit derived from existing units of mass, length and time and of a convenient size for practical work as early as 1861. The definition of the ohm was revised several times. Today, the definition of the ohm is expressed from the quantum Hall effect.

The **ampere**, often shortened to "amp", is the base unit of electric current in the International System of Units (SI). It is named after André-Marie Ampère (1775–1836), French mathematician and physicist, considered the father of electrodynamics.

For a device with a conductance of one siemens, the electric current through the device will increase by one ampere for every increase of one volt of electric potential difference across the device.

The conductance of a resistor with a resistance of five ohms, for example, is (5 Ω)^{−1}, which is equal to 200 mS.

A name that is used as an alternative to the *siemens* is the * mho* /moʊ/ , the reciprocal of one ohm. It is derived from spelling

The **Greek alphabet** has been used to write the Greek language since the late ninth or early eighth century BC. It is derived from the earlier Phoenician alphabet, and was the first alphabetic script to have distinct letters for vowels as well as consonants. In Archaic and early Classical times, the Greek alphabet existed in many different local variants, but, by the end of the fourth century BC, the Eucleidean alphabet, with twenty-four letters, ordered from alpha to omega, had become standard and it is this version that is still used to write Greek today. These twenty-four letters are: Α α, Β β, Γ γ, Δ δ, Ε ε, Ζ ζ, Η η, Θ θ, Ι ι, Κ κ, Λ λ, Μ μ, Ν ν, Ξ ξ, Ο ο, Π π, Ρ ρ, Σ σ/ς, Τ τ, Υ υ, Φ φ, Χ χ, Ψ ψ, and Ω ω.

The **Siemens mercury unit** is an obsolete unit of electrical resistance. It was defined by Werner von Siemens in 1860 as the resistance of a mercury column with a length of one metre and uniform cross-section of 1 mm^{2} held at a temperature of zero degrees Celsius. It is equivalent to approximately 0.953 ohm.

NIST's *Guide for the Use of the International System of Units (SI)* refers to the mho as an "unaccepted special name for an SI unit", and indicates that it should be strictly avoided.^{ [4] }

The SI term *siemens* is used universally in science and often in electrical applications, while *mho* is still used in some electronic contexts. The inverted capital omega symbol, while not an official SI abbreviation, is less likely to be confused with a variable than the letter S when doing algebraic calculations by hand, where the usual typographical distinctions (such as italic for variables and Roman for unit names) are difficult to maintain. Likewise, it is difficult to distinguish the symbol *S* from the lower-case *s* where *second* is meant, potentially causing confusion.^{ [5] } So, for example, a pentode’s transconductance of 2.2 mS might alternatively be written as 2.2 or 2200 (most common in the 1930s) or 2.2 mA/V. A handwritten "S" can also be misread as the frequency space variable "s", commonly used in transfer functions.

- ↑
*NIST Guide to the SI, Chapter 9: Rules and Style Conventions for Spelling Unit Names*, National Institute of Standards and Technology, 2008, retrieved 2017-12-22 - ↑ Maver, William: American Telegraphy and Encyclopedia of the Telegraph: Systems, Apparatus, Operation. 1903.
- ↑ "Siemens (Unit of Electrical Conductance)".
*www.tech-faq.com*. - ↑
*NIST Guide to the SI, Chapter 5: Units Outside the SI*, National Institute of Standards and Technology, 2008, retrieved 2017-12-22 - ↑ Eugene R. Weiner,
*Applications of Environmental Aquatic Chemistry: A Practical Guide*, p. 109, CRC Press, 2013 ISBN 1439853320

**Omega** is the 24th and last letter of the Greek alphabet. In the Greek numeric system/Isopsephy (Gematria), it has a value of 800. The word literally means "great O", as opposed to omicron, which means "little O".

The **coulomb** is the International System of Units (SI) unit of electric charge. It is the charge transported by a constant current of one ampere in one second:

**Ohm's law** states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the usual mathematical equation that describes this relationship:

The **henry** is the SI derived unit of electrical inductance. If a current of 1 ampere flowing through the coil produces flux linkage of 1 weber turn, the coil has a self inductance of 1 henry. The unit is named after Joseph Henry (1797–1878), the American scientist who discovered electromagnetic induction independently of and at about the same time as Michael Faraday (1791–1867) in England.

As originally stated in terms of DC resistive circuits only, **Thévenin's theorem** holds that:

Components of an electrical circuit or electronic circuit can be connected in series, parallel, or series-parallel. The two simplest of these are called **series** and **parallel** and occur frequently. Components connected in series are connected along a single conductive path, so the same current flows through all of the components but voltage is dropped (lost) across each of the resistances. In a series circuit, the sum of the voltages consumed by each individual resistance is equal to the source voltage. Components connected in parallel are connected along multiple paths so that the current can split up; the same voltage is applied to each component.

**Acoustic impedance** and **specific acoustic impedance** are measures of the opposition that a system presents to the acoustic flow resulting from an acoustic pressure applied to the system. The SI unit of acoustic impedance is the pascal second per cubic metre or the rayl per square metre, while that of specific acoustic impedance is the pascal second per metre or the rayl. In this article the symbol rayl denotes the MKS rayl. There is a close analogy with electrical impedance, which measures the opposition that a system presents to the electrical flow resulting from an electrical voltage applied to the system.

**Transconductance**, also infrequently called **mutual conductance**, is the electrical characteristic relating the current through the output of a device to the voltage across the input of a device. Conductance is the reciprocal of resistance.

In physics, the **weber** is the SI derived unit of magnetic flux. A *flux density* of one Wb/m^{2} is one tesla.

A **magnetic circuit** is made up of one or more closed loop paths containing a magnetic flux. The flux is usually generated by permanent magnets or electromagnets and confined to the path by magnetic cores consisting of ferromagnetic materials like iron, although there may be air gaps or other materials in the path. Magnetic circuits are employed to efficiently channel magnetic fields in many devices such as electric motors, generators, transformers, relays, lifting electromagnets, SQUIDs, galvanometers, and magnetic recording heads.

In electromagnetism, **current density** is the electric current per unit area of cross section. The **current density vector** is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the charges at this point. In SI units, the electric current density is measured in amperes per square metre.

The **impedance of free space**, *Z*_{0}, is a physical constant relating the magnitudes of the electric and magnetic fields of electromagnetic radiation travelling through free space. That is, *Z*_{0} = |**E**|/|**H**|, where |**E**| is the electric field strength and |**H**| is the magnetic field strength. It currently has an exactly defined value

The **watt** is a unit of power. In the International System of Units (SI) it is defined as a derived unit of 1 joule per second, and is used to quantify the rate of energy transfer. In dimensional analysis, power is described by .

The constants **K _{M}** and

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.