Sound measurements | |
---|---|
Characteristic | Symbols |
Sound pressure | p, SPL, LPA |
Particle velocity | v, SVL |
Particle displacement | δ |
Sound intensity | I, SIL |
Sound power | P, SWL, LWA |
Sound energy | W |
Sound energy density | w |
Sound exposure | E, SEL |
Acoustic impedance | Z |
Audio frequency | AF |
Transmission loss | TL |
Sound intensity, also known as acoustic intensity, is defined as the power carried by sound waves per unit area in a direction perpendicular to that area, also called the sound power density and the sound energy flux density. [2] The SI unit of intensity, which includes sound intensity, is the watt per square meter (W/m2). One application is the noise measurement of sound intensity in the air at a listener's location as a sound energy quantity. [3]
Sound intensity is not the same physical quantity as sound pressure. Human hearing is sensitive to sound pressure which is related to sound intensity. In consumer audio electronics, the level differences are called "intensity" differences, but sound intensity is a specifically defined quantity and cannot be sensed by a simple microphone.
Sound intensity level is a logarithmic expression of sound intensity relative to a reference intensity.
Sound intensity, denoted I, is defined by where
Both I and v are vectors, which means that both have a direction as well as a magnitude. The direction of sound intensity is the average direction in which energy is flowing.
The average sound intensity during time T is given by For a plane wave [ citation needed ], Where,
For a spherical sound wave, the intensity in the radial direction as a function of distance r from the centre of the sphere is given by where
Thus sound intensity decreases as 1/r2 from the centre of the sphere:
This relationship is an inverse-square law.
Sound intensity level (SIL) or acoustic intensity level is the level (a logarithmic quantity) of the intensity of a sound relative to a reference value.
It is denoted LI, expressed in nepers, bels, or decibels, and defined by [4] where
The commonly used reference sound intensity in air is [5]
being approximately the lowest sound intensity hearable by an undamaged human ear under room conditions. The proper notations for sound intensity level using this reference are LI /(1 pW/m2) or LI (re 1 pW/m2), but the notations dB SIL, dB(SIL), dBSIL, or dBSIL are very common, even if they are not accepted by the SI. [6]
The reference sound intensity I0 is defined such that a progressive plane wave has the same value of sound intensity level (SIL) and sound pressure level (SPL), since
The equality of SIL and SPL requires that where p0 = 20 μPa is the reference sound pressure.
For a progressive spherical wave, where z0 is the characteristic specific acoustic impedance. Thus,
In air at ambient temperature, z0 = 410 Pa·s/m, hence the reference value I0 = 1 pW/m2. [7]
In an anechoic chamber which approximates a free field (no reflection) with a single source, measurements in the far field in SPL can be considered to be equal to measurements in SIL. This fact is exploited to measure sound power in anechoic conditions.
Sound intensity is defined as the time averaged product of sound pressure and acoustic particle velocity. [8] Both quantities can be directly measured by using a sound intensity p-u probe comprising a microphone and a particle velocity sensor, or estimated indirectly by using a p-p probe that approximates the particle velocity by integrating the pressure gradient between two closely spaced microphones. [9]
Pressure-based measurement methods are widely used in anechoic conditions for noise quantification purposes. The bias error introduced by a p-p probe can be approximated by [10] where is the “true” intensity (unaffected by calibration errors), is the biased estimate obtained using a p-p probe, is the root-mean-squared value of the sound pressure, is the wave number, is the density of air, is the speed of sound and is the spacing between the two microphones. This expression shows that phase calibration errors are inversely proportional to frequency and microphone spacing and directly proportional to the ratio of the mean square sound pressure to the sound intensity. If the pressure-to-intensity ratio is large then even a small phase mismatch will lead to significant bias errors. In practice, sound intensity measurements cannot be performed accurately when the pressure-intensity index is high, which limits the use of p-p intensity probes in environments with high levels of background noise or reflections.
On the other hand, the bias error introduced by a p-u probe can be approximated by [10] where is the biased estimate obtained using a p-u probe, and are the Fourier transform of sound pressure and particle velocity, is the reactive intensity and is the p-u phase mismatch introduced by calibration errors. Therefore, the phase calibration is critical when measurements are carried out under near field conditions, but not so relevant if the measurements are performed out in the far field. [10] The “reactivity” (the ratio of the reactive to the active intensity) indicates whether this source of error is of concern or not. Compared to pressure-based probes, p-u intensity probes are unaffected by the pressure-to-intensity index, enabling the estimation of propagating acoustic energy in unfavorable testing environments provided that the distance to the sound source is sufficient.
Relative density, also called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Specific gravity for solids and liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is preferred in SI, whereas the term "specific gravity" is gradually being abandoned.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.
In quantum mechanics, a density matrix is a matrix that describes an ensemble of physical systems as quantum states. It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles. Mixed ensembles arise in quantum mechanics in two different situations:
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s, or 1 km in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating.
A cylindrical coordinate system is a three-dimensional coordinate system that specifies point positions by the distance from a chosen reference axis (axis L in the image opposite), the direction from the axis relative to a chosen reference direction (axis A), and the distance from a chosen reference plane perpendicular to the axis (plane containing the purple section). The latter distance is given as a positive or negative number depending on which side of the reference plane faces the point.
In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.
Electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either or . The density is determined, through definition, by the normalised -electron wavefunction which itself depends upon variables. Conversely, the density determines the wave function modulo up to a phase factor, providing the formal foundation of density functional theory.
In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.
Sound pressure or acoustic pressure is the local pressure deviation from the ambient atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa).
Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. It is defined as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface." The SI unit of sound power is the watt (W). It relates to the power of the sound force on a surface enclosing a sound source, in air.
Particle velocity is the velocity of a particle in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound, but it can also be a transverse wave as with the vibration of a taut string.
Acoustic impedance and specific acoustic impedance are measures of the opposition that a system presents to the acoustic flow resulting from an acoustic pressure applied to the system. The SI unit of acoustic impedance is the pascal-second per cubic metre, or in the MKS system the rayl per square metre (Rayl/m2), while that of specific acoustic impedance is the pascal-second per metre (Pa·s/m), or in the MKS system the rayl (Rayl). There is a close analogy with electrical impedance, which measures the opposition that a system presents to the electric current resulting from a voltage applied to the system.
Particle displacement or displacement amplitude is a measurement of distance of the movement of a sound particle from its equilibrium position in a medium as it transmits a sound wave. The SI unit of particle displacement is the metre (m). In most cases this is a longitudinal wave of pressure, but it can also be a transverse wave, such as the vibration of a taut string. In the case of a sound wave travelling through air, the particle displacement is evident in the oscillations of air molecules with, and against, the direction in which the sound wave is travelling.
In mathematics, Weyl's lemma, named after Hermann Weyl, states that every weak solution of Laplace's equation is a smooth solution. This contrasts with the wave equation, for example, which has weak solutions that are not smooth solutions. Weyl's lemma is a special case of elliptic or hypoelliptic regularity.
In mathematics, the cylindrical harmonics are a set of linearly independent functions that are solutions to Laplace's differential equation, , expressed in cylindrical coordinates, ρ (radial coordinate), φ (polar angle), and z (height). Each function Vn(k) is the product of three terms, each depending on one coordinate alone. The ρ-dependent term is given by Bessel functions (which occasionally are also called cylindrical harmonics).
In fluid dynamics, Luke's variational principle is a Lagrangian variational description of the motion of surface waves on a fluid with a free surface, under the action of gravity. This principle is named after J.C. Luke, who published it in 1967. This variational principle is for incompressible and inviscid potential flows, and is used to derive approximate wave models like the mild-slope equation, or using the averaged Lagrangian approach for wave propagation in inhomogeneous media.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
In quantum probability, the Belavkin equation, also known as Belavkin-Schrödinger equation, quantum filtering equation, stochastic master equation, is a quantum stochastic differential equation describing the dynamics of a quantum system undergoing observation in continuous time. It was derived and henceforth studied by Viacheslav Belavkin in 1988.
Taylor–Maccoll flow refers to the steady flow behind a conical shock wave that is attached to a solid cone. The flow is named after G. I. Taylor and J. W. Maccoll, whom described the flow in 1933, guided by an earlier work of Theodore von Kármán.