In science and engineering, a power level and a field level (also called a root-power level) are logarithmic magnitudes of certain quantities referenced to a standard reference value of the same type.
The type of level and choice of units indicate the scaling of the logarithm of the ratio between the quantity and its reference value, though a logarithm may be considered to be a dimensionless quantity. [1] [2] [3] The reference values for each type of quantity are often specified by international standards.
Power and field levels are used in electronic engineering, telecommunications, acoustics and related disciplines. Power levels are used for signal power, noise power, sound power, sound exposure, etc. Field levels are used for voltage, current, sound pressure. [4] [ clarification needed ]
Level of a power quantity, denoted LP, is defined by
where
The level of a root-power quantity (also known as a field quantity), denoted LF, is defined by [5]
where
If the power quantity P is proportional to F2, and if the reference value of the power quantity, P0, is in the same proportion to F02, the levels LF and LP are equal.
The neper, bel, and decibel (one tenth of a bel) are units of level that are often applied to such quantities as power, intensity, or gain. [6] The neper, bel, and decibel are related by [7]
Level and its units are defined in ISO 80000-3.
The ISO standard defines each of the quantities power level and field level to be dimensionless, with 1 Np = 1. This is motivated by simplifying the expressions involved, as in systems of natural units.
Power and field quantities are part of a larger class, logarithmic ratio quantities.
ANSI/ASA S1.1-2013 defines a class of quantities it calls levels. It defines a level of a quantity Q, denoted LQ, as [8]
where
For the level of a root-power quantity, the base of the logarithm is r = e . For the level of a power quantity, the base of the logarithm is r = e2. [9]
The logarithmic frequency ratio (also known as frequency level) of two frequencies is the logarithm of their ratio, and may be expressed using the unit octave (symbol: oct) corresponding to the ratio 2 or the unit decade (symbol: dec) corresponding to the ratio 10: [7]
In music theory, the octave is a unit used with logarithm base 2 (called interval ). [10] A semitone is one twelfth of an octave. A cent is one hundredth of a semitone. In this context, the reference frequency is taken to be C0, four octaves below middle C. [11]
The decibel is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a power ratio of 101/10 or root-power ratio of 101⁄20.
In mathematics, the logarithm is the inverse function to exponentiation. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base 10 of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logb x, or even without the explicit base, log x, when no confusion is possible, or when the base does not matter such as in big O notation.
An order of magnitude is an approximation of the logarithm of a value relative to some contextually understood reference value, usually 10, interpreted as the base of the logarithm and the representative of values of magnitude one. Logarithmic distributions are common in nature and considering the order of magnitude of values sampled from such a distribution can be more intuitive. When the reference value is 10, the order of magnitude can be understood as the number of digits in the base-10 representation of the value. Similarly, if the reference value is one of some powers of 2, since computers store data in a binary format, the magnitude can be understood in terms of the amount of computer memory needed to store that value.
The neper is a logarithmic unit for ratios of measurements of physical field and power quantities, such as gain and loss of electronic signals. The unit's name is derived from the name of John Napier, the inventor of logarithms. As is the case for the decibel and bel, the neper is a unit defined in the international standard ISO 80000. It is not part of the International System of Units (SI), but is accepted for use alongside the SI.
Noise figure (NF) and noise factor (F) are figures of merit that indicate degradation of the signal-to-noise ratio (SNR) that is caused by components in a signal chain. These figures of merit are used to evaluate the performance of an amplifier or a radio receiver, with lower values indicating better performance.
Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.
In electronics, gain is a measure of the ability of a two-port circuit to increase the power or amplitude of a signal from the input to the output port by adding energy converted from some power supply to the signal. It is usually defined as the mean ratio of the signal amplitude or power at the output port to the amplitude or power at the input port. It is often expressed using the logarithmic decibel (dB) units. A gain greater than one, that is, amplification, is the defining property of an active component or circuit, while a passive circuit will have a gain of less than one.
A logarithmic scale is a way of displaying numerical data over a very wide range of values in a compact way. As opposed to a linear number line in which every unit of distance corresponds to adding by the same amount, on a logarithmic scale, every unit of length corresponds to multiplying the previous value by the same amount. Hence, such a scale is nonlinear. In nonlinear scale, the numbers 1, 2, 3, 4, 5, and so on would not be equally spaced. Rather, the numbers 10, 100, 1000, 10000, and 100000 would be equally spaced. Likewise, the numbers 2, 4, 8, 16, 32, and so on, would be equally spaced. Often exponential growth curves are displayed on a log scale, otherwise they would increase too quickly to fit within a small graph.
In photography, exposure value (EV) is a number that represents a combination of a camera's shutter speed and f-number, such that all combinations that yield the same exposure have the same EV. Exposure value is also used to indicate an interval on the photographic exposure scale, with a difference of 1 EV corresponding to a standard power-of-2 exposure step, commonly referred to as a stop.
The phon is a logarithmic unit of loudness level for tones and complex sounds. Loudness is measured in sones, a linear unit. Human sensitivity to sound is variable across different frequencies; therefore, although two different tones may present an identical sound pressure to a human ear, they may be psychoacoustically perceived as differing in loudness. The purpose of the phon is to provide a logarithmic measurement for perceived sound magnitude, while the primary loudness standard methods result in a linear representation. A sound with a loudness of 1 sone is judged equally loud as a 1 kHz tone with a sound pressure level of 40 decibels above 20 micropascal. The phon is psychophysically matched to a reference frequency of 1 kHz. In other words, the phon matches the sound pressure level (SPL) in decibels of a similarly perceived 1 kHz pure tone. For instance, if a sound is perceived to be equal in intensity to a 1 kHz tone with an SPL of 50 dB, then it has a loudness of 50 phons, regardless of its physical properties. The phon was proposed in DIN 45631 and ISO 532 B by Stanley Smith Stevens.
Sound pressure or acoustic pressure is the local pressure deviation from the ambient atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa).
Sound intensity, also known as acoustic intensity, is defined as the power carried by sound waves per unit area in a direction perpendicular to that area. The SI unit of intensity, which includes sound intensity, is the watt per square meter (W/m2). One application is the noise measurement of sound intensity in the air at a listener's location as a sound energy quantity.
Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. It is defined as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface." The SI unit of sound power is the watt (W). It relates to the power of the sound force on a surface enclosing a sound source, in air.
Particle velocity is the velocity of a particle in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound, but it can also be a transverse wave as with the vibration of a taut string.
ISO 80000 or IEC 80000, Quantities and units, is an international standard describing the International System of Quantities (ISQ). It was developed and promulgated jointly by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). It serves as a style guide for using physical quantities and units of measurement, formulas involving them, and their corresponding units, in scientific and educational documents for worldwide use. The ISO/IEC 80000 family of standards was completed with the publication of Part 1 in November 2009.
The International System of Quantities (ISQ) consists of the quantities used in physics and in modern science in general, starting with basic quantities such as length and mass, and the relationships between those quantities. This system underlies the International System of Units (SI) but does not itself determine the units of measurement used for the quantities.
Sound exposure is the integral, over time, of squared sound pressure. The SI unit of sound exposure is the pascal squared second (Pa2·s).
A power quantity is a power or a quantity directly proportional to power, e.g., energy density, acoustic intensity, and luminous intensity. Energy quantities may also be labelled as power quantities in this context.
In mathematics, the set of positive real numbers, is the subset of those real numbers that are greater than zero. The non-negative real numbers, also include zero. Although the symbols and are ambiguously used for either of these, the notation or for and or for has also been widely employed, is aligned with the practice in algebra of denoting the exclusion of the zero element with a star, and should be understandable to most practicing mathematicians.
A one-third octave is a logarithmic unit of frequency ratio equal to either one third of an octave or one tenth of a decade. An alternative (unambiguous) term for one tenth of a decade is a decidecade.