A volume unit (VU) meter or standard volume indicator (SVI) is a device displaying a representation of the signal level in audio equipment.
The original design was proposed in the 1940 IRE paper, A New Standard Volume Indicator and Reference Level, written by experts from CBS, NBC, and Bell Telephone Laboratories. [1] The Acoustical Society of America then standardized it in 1942 (ANSI C16.5-1942) [2] [3] for use in telephone installation and radio broadcast stations.
Consumer audio equipment often features VU meters, both for utility purposes (e.g. in recording equipment) and for aesthetics (in playback devices).
The original VU meter is a passive electromechanical device, namely a 200 μA DC d'Arsonval movement ammeter fed from a full-wave copper-oxide rectifier mounted within the meter case. The mass of the needle causes a relatively slow response, which in effect integrates or smooths the signal, with a rise time of 300 ms. This has the effect of averaging out peaks and troughs of short duration, and reflects the perceived loudness of the material more closely than the more modern and initially more expensive PPM meters. For this reason many audio practitioners prefer the VU meter to its alternatives, though the meter indication does not reflect some of the key features of the signal, most notably its peak level, which in many cases, must not pass a defined limit.
0 VU is equal to +4 dBu, or 1.228 volts RMS, a power of about 2.5 milliwatts when applied across a 600-ohm load. 0 VU is often referred to as "0 dB". [4] The meter was designed not to measure the signal, but to let users aim the signal level to a target level of 0 VU (sometimes labelled 100%), so it is not important that the device is non-linear and imprecise for low levels[ according to whom? ]. In effect, the scale ranges from −20 VU to +3 VU, with −3 VU right in the middle (half the power of 0 VU). Purely electronic devices may emulate the response of the needle; they are VU-meters in as much as they respect the standard.
In the broadcast industry, loudness monitoring was standardized, in 2009 in the United States by the ATSC A/85, in 2010 in Europe by the EBU R 128, in 2011 in Japan by the TR-B32, and in 2010 in Australia by the OP-59.
The original designers of the VU meter were tasked with finding a way to measure complex audio signals with a simple technology.
Since a VU meter is a mechanical device, it can never reflect the instantaneous signal peaks of complex audio signals. The designers of the VU meter therefore took a different approach. They created a meter that did not measure peaks, but simply inferred them. A real VU meter has a very specific "ballistic characteristic". This means that it responds to changing audio signals at a very precise speed, rising from no signal to 99% of "0 VU" when a 1 kHz sine wave tone is applied for 300 milliseconds.
When using a VU meter, the audio system is calibrated with a sine wave tone at a "reference level" for the system. At the reference level, the VU meter shows "0" for a sine-wave tone, but the engineer must know that, with music or speech, to always infer that peak levels are always between 6 dB and 10 dB higher than the reference level. The usefulness of the VU meter comes from the fact that for most types of audio sources the system engineer can count on these peaks being within this range and can design the audio system with confidence. Good engineering practice is to always build in a little extra "headroom", as it is called, to cover the strange conditions where an audio signal might exceed normal peak levels or the equipment operator fails to adjust the levels correctly. Typically the levels considered when designing systems using a VU meter are:
The behaviour of VU meters is defined in ANSI C16.5-1942, British Standard BS 6840, and IEC 60268-17.
VU defined:
“The reading of the volume indicator shall be 0 VU when it is connected to an AC voltage equal to 1.228 Volts RMS across a 600 ohm resistance (equal to +4 [dBu]) at 1000 cycles per second.” [7] [8]
Note: The reference above is generally true now and was always true in the recording industry. However in some North American broadcast installations up until late in the 20th century, the Reference level ("0VU") was +8dBm at large studio installations and some used 150 ohm impedance throughout the studio.(CFRB Toronto and CFPL London Canada) This was yet another "standard" established in the early years of audio and the VU meter was altered by changing the series resistors to adjust its sensitivity. This had no effect on the ballistics. [9]
The rise time, defined as the time it takes for the needle to reach 99% of the distance to 0 VU when the VU-meter is submitted to a signal that steps from 0 to a level that reads 0 VU, is 300 ms.
The overshoot must be within 1 to 1.5%.
The fall time is the same as the rise time, 300 ms.
The level specification is meant at 1000 Hz. The reading should not depart from the reading at 1000 Hz by more than 0.2 dB from 35 Hz to 10 kHz or more than 0.5 dB between 25 Hz and 16 kHz.
Note that the specification mentions only sinusoid waveforms. Given the electromechanical principle of the meter, the deviation of the needle is actually approximately proportional to the average of the part of the signal with more than approximately 0.4 V instantaneously because of the two copper-oxide rectifiers always in series, which transfer function curve has a knee around 0.2 V. Signals generally do not have a sinusoidal waveform by far, even if they all fall within the VU-meter bandpass. The reading is the average of the voltage, [10] and is not an indication of the power of the signal, which is proportional to the average of the square of the voltage, or the root-mean-square (RMS) value. As a conventional VU reading, however, it served its purpose as an indication a) of the overall level and dynamics of the signal and b) of the proximity to the maximum admitted level, to the operators of recording and broadcasting equipment. Maintenance staff could also use it as a measurement apparatus, to check for losses in transmissions and level alignment, provided that they used exclusively sine waves as test signals.
The VU meter and its attenuator should present a 7,500-ohm impedance to the circuit it is applied to, measured with a sinusoid signal that sets the indicator to 0 dB.
The VU-meter was originally developed in 1939 by the combined effort of Bell Labs and broadcasters CBS and NBC. [11] In the 1970s–80s, neon-filled, planar dual displays with up to 201 segments per stereo channel [12] were popular among broadcasters as fast bar graph VU meters.
The consumer audio industry often uses volume indicators that do not comply with any standard. [13]
BBC sound engineers would refer to the VU meter as the "Virtually Useless" meter, [14] preferring the PPM.
Academic research has shown that an SVI or VU meter behaves differently to the average value and RMS meters. The ballistics shown by this instrument, in response to signals with a large crest factor, position its readings halfway between both. For example, an increment of 3 dB in the crest factor of an audio signal gives approximately a fall of −3 dB in a RMS meter, −6 dB in an average meter, and −4 dB in a VU meter. [15]
The decibel is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a power ratio of 101/10 or root-power ratio of 101/20.
The amplitude of a periodic variable is a measure of its change in a single period. The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplitude, which are all functions of the magnitude of the differences between the variable's extreme values. In older texts, the phase of a periodic function is sometimes called the amplitude.
A multimeter is a measuring instrument that can measure multiple electrical properties. A typical multimeter can measure voltage, resistance, and current, in which case can be used as a voltmeter, ohmmeter, and ammeter. Some feature the measurement of additional properties such as temperature and capacitance.
Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.
The total harmonic distortion is a measurement of the harmonic distortion present in a signal and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency. Distortion factor, a closely related term, is sometimes used as a synonym.
Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. The abbreviations AC and DC are often used to mean simply alternating and direct, respectively, as when they modify current or voltage.
Audio power is the electrical power transferred from an audio amplifier to a loudspeaker, measured in watts. The electrical power delivered to the loudspeaker, together with its efficiency, determines the sound power generated.
Audio system measurements are used to quantify audio system performance. These measurements are made for several purposes. Designers take measurements to specify the performance of a piece of equipment. Maintenance engineers make them to ensure equipment is still working to specification, or to ensure that the cumulative defects of an audio path are within limits considered acceptable. Audio system measurements often accommodate psychoacoustic principles to measure the system in a way that relates to human hearing.
Line level is the specified strength of an audio signal used to transmit analog sound between audio components such as CD and DVD players, television sets, audio amplifiers, and mixing consoles.
In digital and analog audio, headroom refers to the amount by which the signal-handling capabilities of an audio system can exceed a designated nominal level. Headroom can be thought of as a safety zone allowing transient audio peaks to exceed the nominal level without damaging the system or the audio signal, e.g., via clipping. Standards bodies differ in their recommendations for nominal level and headroom.
An S meter is an indicator often provided on communications receivers, such as amateur radio or shortwave broadcast receivers. The scale markings are derived from a system of reporting signal strength from S1 to S9 as part of the R-S-T system. The term S unit refers to the amount of signal strength required to move an S meter indication from one marking to the next.
Decibels relative to full scale is a unit of measurement for amplitude levels in digital systems, such as pulse-code modulation (PCM), which have a defined maximum peak level. The unit is similar to the units dBov and decibels relative to overload (dBO).
A peak meter is a type of measuring instrument that visually indicates the instantaneous level of an audio signal that is passing through it. In sound reproduction, the meter, whether peak or not, is usually meant to correspond to the perceived loudness of a particular signal. The term peak is used to denote the meter's ability, regardless of the type of visual display, to indicate the highest output level at any instant.
A peak programme meter (PPM) is an instrument used in professional audio that indicates the level of an audio signal.
The alignment level in an audio signal chain or on an audio recording is a defined anchor point that represents a reasonable or typical level.
A quasi-peak detector is a type of electronic detector or rectifier. Quasi-peak detectors for specific purposes have usually been standardized with mathematically precisely defined dynamic characteristics of attack time, integration time, and decay time or fall-back time.
Nominal level is the operating level at which an electronic signal processing device is designed to operate. The electronic circuits that make up such equipment are limited in the maximum signal they can handle and the low-level internally generated electronic noise they add to the signal. The difference between the internal noise and the maximum level is the device's dynamic range. The nominal level is the level that these devices were designed to operate at, for best dynamic range and adequate headroom. When a signal is chained with improper gain staging through many devices, clipping may occur or the system may operate with reduced dynamic range.
A magic eye tube or tuning indicator, in technical literature called an electron-ray indicator tube, is a vacuum tube which gives a visual indication of the amplitude of an electronic signal, such as an audio output, radio-frequency signal strength, or other functions. The magic eye is a specific type of such a tube with a circular display similar to the EM34 illustrated. Its first broad application was as a tuning indicator in radio receivers, to give an indication of the relative strength of the received radio signal, to show when a radio station was properly tuned in.
Broadcast-safe video is a term used in the broadcast industry to define video and audio compliant with the technical or regulatory broadcast requirements of the target area or region the feed might be broadcasting to. In the United States, the Federal Communications Commission (FCC) is the regulatory authority; in most of Europe, standards are set by the European Broadcasting Union (EBU).
An audio analyzer is a test and measurement instrument used to objectively quantify the audio performance of electronic and electro-acoustical devices. Audio quality metrics cover a wide variety of parameters, including level, gain, noise, harmonic and intermodulation distortion, frequency response, relative phase of signals, interchannel crosstalk, and more. In addition, many manufacturers have requirements for behavior and connectivity of audio devices that require specific tests and confirmations.