Logic analyzer

Last updated
Logic analyzer Logic analyzer Agilent 16902A.jpg
Logic analyzer

A logic analyzer is an electronic instrument that captures and displays multiple logic signals from a digital system or digital circuit. A logic analyzer may convert the captured data into timing diagrams, protocol decodes, state machine traces, opcodes, or may correlate opcodes with source-level software. Logic analyzers have advanced triggering capabilities, and are useful when a user needs to see the timing relationships between many signals in a digital system. [1]

Contents

Overview

Presently, there are three distinct categories of logic analyzers available on the market:

8-channel USB logic analyzer 8-Channel (cropped).jpg
8-channel USB logic analyzer

Operation

A logic analyzer can be triggered on a complicated sequence of digital events, then capture a large amount of digital data from the system under test (SUT).

When logic analyzers first came into use, it was common to attach several hundred "clips" to a digital system. Later, specialized connectors came into use. The evolution of logic analyzer probes has led to a common footprint that multiple vendors support, which provides added freedom to end users. Introduced in April, 2002, connectorless technology (identified by several vendor-specific trade names: Compression Probing; Soft Touch; D-Max) has become popular. These probes provide a durable, reliable mechanical and electrical connection between the probe and the circuit board with less than 0.5 to 0.7 pF loading per signal.

Once the probes are connected, the user programs the analyzer with the names of each signal, and can group several signals together for easier manipulation. Next, a capture mode is chosen, either "timing" mode, where the input signals are sampled at regular intervals based on an internal or external clock source, or "state" mode, where one or more of the signals are defined as "clocks", and data are taken on the rising or falling edges of these clocks, optionally using other signals to qualify these clocks.

After the mode is chosen, a trigger condition must be set. A trigger condition can range from simple (such as triggering on a rising or falling edge of a single signal) to the very complex (such as configuring the analyzer to decode the higher levels of the TCP/IP stack and triggering on a certain HTTP packet).

At this point, the user sets the analyzer to "run" mode, either triggering once, or repeatedly triggering.

Once the data are captured, they can be displayed several ways, from the simple (showing waveforms or state listings) to the complex (showing decoded Ethernet protocol traffic). Some analyzers can also operate in a "compare" mode, where they compare each captured data set to a previously recorded data set, and halt capture or visually notify the operator when this data set is either matched or not. This is useful for long-term empirical testing. Recent analyzers can even be set to email a copy of the test data to the engineer on a successful trigger.

Uses

Many digital designs, including those of ICs, are simulated to detect defects before the unit is constructed. The simulation usually provides logic analysis displays. Often, complex discrete logic is verified by simulating inputs and testing outputs using boundary scan. Logic analyzers can uncover hardware defects that are not found in simulation. These problems are typically too difficult to model in simulation, or too time-consuming to simulate and often cross multiple clock domains.

Field-programmable gate arrays have become a common measurement point for logic analyzers and are also used to debug the logic circuit.

Logic Analyzers are also very useful when it comes to analyze serial protocols, like I2C, SPI or UART, as they allow to capture long logic sequences showing one or several communication frames. Usually, the Logic Analyzer software will also interpret the protocol layer, making debugging of firmware less tedious task.

History

As digital computing and integrated circuits emerged in the 1960s, [5] new and difficult problems began to arise, problems that oscilloscopes had trouble handling. For the first time in computing history, it became essential to simultaneously view large numbers of signals. Early solutions attempted to combine hardware from multiple oscilloscopes into one package, but screen clutter, a lack of definite data interpretation, as well as probing constraints made this solution only marginally usable.

The HP 5000A Logic Analyzer, introduced in the October 1973 issue of the Hewlett-Packard Journal, was probably the first commercially available instrument to be called a "Logic Analyzer". However, the HP 5000A was limited to two channels and presented information by means of two rows of 32 LEDs. The first truly parallel instrument was the twelve channel HP 1601L, it was a plug-in for the HP 180 series oscilloscope mainframes and used the oscilloscope screen to present 16 rows of 12 bit words as 1s and 0s. It was introduced in the January 1974 Hewlett-Packard Journal. [6]

Mixed-signal oscilloscopes

Mixed-signal oscilloscopes combine the functionality of a digital storage oscilloscope with a logic analyzer. The several benefits of these include the ability to view analog and digital signals together in time, and to trigger on either digital or analog signals and capture on the other. A few limitations of mixed signal oscilloscopes are that they do not capture state-mode data, they have a limited channel count, and do not provide the analytical depth and insight of a logic analyzer.

See also

Related Research Articles

<span class="mw-page-title-main">Packet analyzer</span> Computer network equipment or software that analyzes network traffic

A packet analyzer, also known as packet sniffer, protocol analyzer, or network analyzer, is a computer program or computer hardware such as a packet capture appliance that can analyze and log traffic that passes over a computer network or part of a network. Packet capture is the process of intercepting and logging traffic. As data streams flow across the network, the analyzer captures each packet and, if needed, decodes the packet's raw data, showing the values of various fields in the packet, and analyzes its content according to the appropriate RFC or other specifications.

<span class="mw-page-title-main">I²C</span> Serial communication bus

I2C (Inter-Integrated Circuit; pronounced as “eye-squared-C” or “eye-two-C”), alternatively known as I2C or IIC, is a synchronous, multi-master/multi-slave (controller/target), single-ended, serial communication bus invented in 1982 by Philips Semiconductors. It is widely used for attaching lower-speed peripheral ICs to processors and microcontrollers in short-distance, intra-board communication.

<span class="mw-page-title-main">Electronic test equipment</span> Testing appliance for electronics systems

Electronic test equipment is used to create signals and capture responses from electronic devices under test (DUTs). In this way, the proper operation of the DUT can be proven or faults in the device can be traced. Use of electronic test equipment is essential to any serious work on electronics systems.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

Serial Peripheral Interface (SPI) is a de facto standard for synchronous serial communication, used primarily in embedded systems for short-distance wired communication between integrated circuits.

JTAG is an industry standard for verifying designs and testing printed circuit boards after manufacture.

<span class="mw-page-title-main">Automatic test equipment</span> Apparatus used in hardware testing that carries out a series of tests automatically

Automatic test equipment or automated test equipment (ATE) is any apparatus that performs tests on a device, known as the device under test (DUT), equipment under test (EUT) or unit under test (UUT), using automation to quickly perform measurements and evaluate the test results. An ATE can be a simple computer-controlled digital multimeter, or a complicated system containing dozens of complex test instruments capable of automatically testing and diagnosing faults in sophisticated electronic packaged parts or on wafer testing, including system on chips and integrated circuits.

Asynchronous circuit is a sequential digital logic circuit that does not use a global clock circuit or signal generator to synchronize its components. Instead, the components are driven by a handshaking circuit which indicates a completion of a set of instructions. Handshaking works by simple data transfer protocols. Many synchronous circuits were developed in early 1950s as part of bigger asynchronous systems. Asynchronous circuits and theory surrounding is a part of several steps in integrated circuit design, a field of digital electronics engineering.

<span class="mw-page-title-main">Bus analyzer</span>

A bus analyzer is a type of a protocol analysis tool, used for capturing and analyzing communication data across a specific interface bus, usually embedded in a hardware system. The bus analyzer functionality helps design, test and validation engineers to check, test, debug and validate their designs throughout the design cycles of a hardware-based product. It also helps in later phases of a product life cycle, in examining communication interoperability between systems and between components, and clarifying hardware support concerns.

<span class="mw-page-title-main">Network analyzer (electrical)</span> Instrument that measures the network parameters of electrical networks

A network analyzer is an instrument that measures the network parameters of electrical networks. Today, network analyzers commonly measure s–parameters because reflection and transmission of electrical networks are easy to measure at high frequencies, but there are other network parameter sets such as y-parameters, z-parameters, and h-parameters. Network analyzers are often used to characterize two-port networks such as amplifiers and filters, but they can be used on networks with an arbitrary number of ports.

<span class="mw-page-title-main">Hardware emulation</span> Emulating hardware devices in IC design

In integrated circuit design, hardware emulation is the process of imitating the behavior of one or more pieces of hardware with another piece of hardware, typically a special purpose emulation system. The emulation model is usually based on a hardware description language source code, which is compiled into the format used by emulation system. The goal is normally debugging and functional verification of the system being designed. Often an emulator is fast enough to be plugged into a working target system in place of a yet-to-be-built chip, so the whole system can be debugged with live data. This is a specific case of in-circuit emulation.

<span class="mw-page-title-main">Oscilloscope</span> Instrument for displaying time-varying signals

An oscilloscope is a type of electronic test instrument that graphically displays varying voltages of one or more signals as a function of time. Their main purpose is capturing information on electrical signals for debugging, analysis, or characterization. The displayed waveform can then be analyzed for properties such as amplitude, frequency, rise time, time interval, distortion, and others. Originally, calculation of these values required manually measuring the waveform against the scales built into the screen of the instrument. Modern digital instruments may calculate and display these properties directly.

A digital pattern generator is a piece of electronic test equipment or software used to generate digital electronic stimuli. Digital electronics stimuli are a specific kind of electrical waveform varying between two conventional voltages that correspond to two logic states. The main purpose of a digital pattern generator is to stimulate the inputs of a digital electronic device. For that reason, the voltage levels generated by a digital pattern generator are often compatible with digital electronics I/O standards – TTL, LVTTL, LVCMOS and LVDS, for instance.

<span class="mw-page-title-main">HP 64000</span> Software development system

The HP 64000 Logic Development System, introduced 17 September 1979, is a tool for developing hardware and software for products based on commercial microprocessors from a variety of manufacturers. The systems assisted software development with assemblers and compilers for Pascal and C, provided hardware for in-circuit emulation of processors and memory, had debugging tools including logic analysis hardware, and a programmable read-only memory (PROM) chip programmer. A wide variety of optional cards and software were available tailored to particular microprocessors. When introduced the HP 64000 had two distinguishing characteristics. First, unlike most microprocessor development systems of the day, such as the Intel Intellec and Motorola EXORciser, it was not dedicated to a particular manufacturer's microprocessors, and second, it was designed such that up to six workstations could be connected via the HP-IB (IEEE-488) instrumentation bus to a common hard drive and printer to form a tightly integrated network.

This is a subdivision of the Oscilloscope article, discussing the various types and models of oscilloscopes in greater detail.

The following outline is provided as an overview of and topical guide to electronics:

In the electronics industry, embedded instrumentation refers to the integration of test and measurement instrumentation into semiconductor chips. Embedded instrumentation differs from embedded system, which are electronic systems or subsystems that usually comprise the control portion of a larger electronic system. Instrumentation embedded into chips is employed in a variety of electronic test applications, including validating and testing chips themselves, validating, testing and debugging the circuit boards where these chips are deployed, and troubleshooting systems once they have been installed in the field.

Tektronix vintage analog oscilloscopes technologies and evolution. The company was founded in the mid-1940s to produce oscilloscopes.

Keysight Technologies, or Keysight, is an American company that manufactures electronics test and measurement equipment and software. The name is a blend of key and insight. The company was formed as a spin-off of Agilent Technologies, which inherited and rebranded the test and measurement product lines developed and produced from the late 1960s to the turn of the millennium by Hewlett-Packard's Test & Measurement division.

<span class="mw-page-title-main">Pico Technology</span>

Pico Technology is a British manufacturer of high-precision PC-based oscilloscopes and automotive diagnostics equipment, founded in 1991. Their product range includes the PicoScope line of PC-based oscilloscopes, data loggers, automotive equipment, and most recently, handheld USB-based oscilloscopes. Since their inception in 1991, Pico Tech has been researching and developing PC-based oscilloscopes, when the market standard was analogue storage oscilloscopes. Pico Technology is one of two European scope manufacturers, and competes in the low to middle end of the instrumentation market.

References

  1. "Feeling Comfortable with Logic Analyzers" (PDF). keysight.com. Agilent Technologies, Inc. Retrieved 28 November 2012.
  2. "16900 Series Modular Logic Analysis System". keysight.com. Keysight Technologies, Inc. Retrieved 30 March 2021.
  3. "U4154A AXIe-Based Logic Analyzer Module" (PDF). keysight.com. Keysight Technologies, Inc. Archived (PDF) from the original on 2022-10-09. Retrieved 1 December 2017.
  4. "16800 Series Portable Logic Analyzer" (PDF). Keysight.com. Keysight Technologies, Inc. Archived (PDF) from the original on 2022-10-09. Retrieved 31 July 2014.
  5. "The History of the Integrated Circuit". Nobel Prize. Retrieved 28 November 2012.
  6. "The Data Domain Transition". HP Memory Project. Retrieved 3 June 2015.