Audio equipment

Last updated
Audio amplifier Sony TA-1120A Amplifier.jpg
Audio amplifier

Audio equipment refers to devices that reproduce, record, or process sound. This includes microphones, radio receivers, AV receivers, CD players, tape recorders, amplifiers, mixing consoles, effects units, headphones, and speakers. [1]

Contents

Audio equipment is widely used in many different scenarios, such as concerts, bars, meeting rooms and the home where there is a need to reproduce, record and enhance sound volume.

Electronic circuits considered a part of audio electronics may also be designed to achieve certain signal processing operations, in order to make particular alterations to the signal while it is in the electrical form. [2]

Audio signals can be created synthetically through the generation of electric signals from electronic devices.

Audio electronics were traditionally designed with analog electric circuit techniques until advances in digital technologies were developed. Moreover, digital signals are able to be manipulated by computer software much the same way audio electronic devices would, due to its compatible digital nature. Both analog and digital design formats are still used today, and the use of one or the other largely depends on the application. [2]

See also

Related Research Articles

Audio signal processing is a subfield of signal processing that is concerned with the electronic manipulation of audio signals. Audio signals are electronic representations of sound waves—longitudinal waves which travel through air, consisting of compressions and rarefactions. The energy contained in audio signals or sound level is typically measured in decibels. As audio signals may be represented in either digital or analog format, processing may occur in either domain. Analog processors operate directly on the electrical signal, while digital processors operate mathematically on its digital representation.

<span class="mw-page-title-main">Electrical engineering</span> Field of engineering

Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems which use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the latter half of the 19th century after the commercialization of the electric telegraph, the telephone, and electrical power generation, distribution, and use.

<span class="mw-page-title-main">Electronics</span> Branch of physics and electrical engineering

Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other charged particles. Electronics is a subfield of electrical engineering, but it differs from it in that it focuses on using active devices such as transistors, diodes, and integrated circuits to control and amplify the flow of electric current and to convert it from one form to another, such as from alternating current (AC) to direct current (DC) or from analog to digital. Electronics also encompasses the fields of microelectronics, nanoelectronics, optoelectronics, and quantum electronics, which deal with the fabrication and application of electronic devices at microscopic, nanoscopic, optical, and quantum scales.

A communications system or communication system is a collection of individual telecommunications networks systems, relay stations, tributary stations, and terminal equipment usually capable of interconnection and interoperation to form an integrated whole. The components of a communications system serve a common purpose, are technically compatible, use common procedures, respond to controls, and operate in union.

A signal generator is one of a class of electronic devices that generates electrical signals with set properties of amplitude, frequency, and wave shape. These generated signals are used as a stimulus for electronic measurements, typically used in designing, testing, troubleshooting, and repairing electronic or electroacoustic devices, though it often has artistic uses as well.

<span class="mw-page-title-main">Digital audio</span> Technology that records, stores, and reproduces sound

Digital audio is a representation of sound recorded in, or converted into, digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical samples in a continuous sequence. For example, in CD audio, samples are taken 44,100 times per second, each with 16-bit sample depth. Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form. Following significant advances in digital audio technology during the 1970s and 1980s, it gradually replaced analog audio technology in many areas of audio engineering, record production and telecommunications in the 1990s and 2000s.

<span class="mw-page-title-main">Transmitter</span> Electronic device that emits radio waves

In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves.

<span class="mw-page-title-main">Music technology (electronic and digital)</span>

Digital music technology encompasses digital instruments, computers, electronic effects units, software, or digital audio equipment by a performer, composer, sound engineer, DJ, or record producer to produce, perform or record music. The term refers to electronic devices, instruments, computer hardware, and software used in performance, playback, recording, composition, mixing, analysis, and editing of music.

<span class="mw-page-title-main">Digital-to-analog converter</span> Device that converts a digital signal into an analog signal

In electronics, a digital-to-analog converter is a system that converts a digital signal into an analog signal. An analog-to-digital converter (ADC) performs the reverse function.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

<span class="mw-page-title-main">Analog Devices</span> American semiconductor manufacturer

Analog Devices, Inc. (ADI), also known simply as Analog, is an American multinational semiconductor company specializing in data conversion, signal processing, and power management technology, headquartered in Wilmington, Massachusetts.

<span class="mw-page-title-main">Tuner (radio)</span>

A tuner is a subsystem that receives radio frequency (RF) transmissions, such as FM broadcasting, and converts the selected carrier frequency and its associated bandwidth into a fixed frequency that is suitable for further processing, usually because a lower frequency is used on the output. Broadcast FM/AM transmissions usually feed this intermediate frequency (IF) directly into a demodulator that converts the radio signal into audio-frequency signals that can be fed into an amplifier to drive a loudspeaker.

<span class="mw-page-title-main">Audio Home Recording Act</span>

The Audio Home Recording Act of 1992 (AHRA) amended the United States copyright law by adding Chapter 10, "Digital Audio Recording Devices and Media". The act enabled the release of recordable digital formats such as Sony and Philips' Digital Audio Tape without fear of contributory infringement lawsuits.

<span class="mw-page-title-main">Sound recording and reproduction</span> Recording of sound and playing it back

Sound recording and reproduction is the electrical, mechanical, electronic, or digital inscription and re-creation of sound waves, such as spoken voice, singing, instrumental music, or sound effects. The two main classes of sound recording technology are analog recording and digital recording.

The history of sound recording - which has progressed in waves, driven by the invention and commercial introduction of new technologies — can be roughly divided into four main periods:

Analog devices are a combination of both analog machine and analog media that can together measure, record, reproduce, receive or broadcast continuous information, for example, the almost infinite number of grades of transparency, voltage, resistance, rotation, or pressure. In theory, the continuous information in an analog signal has an infinite number of possible values with the only limitation on resolution being the accuracy of the analog device.

Musical outboard equipment or outboard gear is used to process or alter a sound signal separately from functionality provided within a mixing console or a digital audio workstation. Outboard effects units can be used either during a live performance or in the recording studio.

<span class="mw-page-title-main">Electronic engineering</span> Electronic engineering involved in the design of electronic circuits, devices, and their systems

Electronic engineering is a sub-discipline of electrical engineering which emerged in the early 20th century and is distinguished by the additional use of active components such as semiconductor devices to amplify and control electric current flow. Previously electrical engineering only used passive devices such as mechanical switches, resistors, inductors, and capacitors.

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

<span class="mw-page-title-main">MOSFET applications</span> BILLIE JO BLAKE © 1969 SOURCE CODE

The metal–oxide–semiconductor field-effect transistor, also known as the metal–oxide–silicon transistor, is a type of insulated-gate field-effect transistor (IGFET) that is fabricated by the controlled oxidation of a semiconductor, typically silicon. The voltage of the covered gate determines the electrical conductivity of the device; this ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals.

References

  1. "How Sound Systems Work". Mediacollege.com. Retrieved 16 December 2018.
  2. 1 2 Kadis, J. (2011). Introduction to sound recording technology. Informally published manuscript, Stanford Music Department: Center for Computer Research in Music and Acoustics, Stanford University, Stanford, California. "Archived copy" (PDF). Archived from the original (PDF) on 2012-02-18. Retrieved 2012-05-03.{{cite web}}: CS1 maint: archived copy as title (link)

Further reading