Data acquisition

Last updated

Data acquisition is the process of sampling signals that measure real-world physical conditions and converting the resulting samples into digital numeric values that can be manipulated by a computer. Data acquisition systems, abbreviated by the acronyms DAS,DAQ, or DAU, typically convert analog waveforms into digital values for processing. The components of data acquisition systems include:

Contents

Digital data acquisition system block diagram DigitalDAQv2.pdf
Digital data acquisition system block diagram

Data acquisition applications are usually controlled by software programs developed using various general purpose programming languages such as Assembly, BASIC, C, C++, C#, Fortran, Java, LabVIEW, Lisp, Pascal, etc. Stand-alone data acquisition systems are often called data loggers.

There are also open-source software packages providing all the necessary tools to acquire data from different, typically specific, hardware equipment. These tools come from the scientific community where complex experiment requires fast, flexible, and adaptable software. Those packages are usually custom-fit but more general DAQ packages like the Maximum Integrated Data Acquisition System can be easily tailored and are used in several physics experiments.

History

In 1963, IBM produced computers that specialized in data acquisition. These include the IBM 7700 Data Acquisition System, and its successor, the IBM 1800 Data Acquisition and Control System. These expensive specialized systems were surpassed in 1974 by general-purpose S-100 computers and data acquisition cards produced by Tecmar/Scientific Solutions Inc. In 1981 IBM introduced the IBM Personal Computer and Scientific Solutions introduced the first PC data acquisition products. [1] [2] [3] [4] [5]

Methodology

Sources and systems

Data acquisition begins with the physical phenomenon or physical property to be measured. Examples of this include temperature, vibration, light intensity, gas pressure, fluid flow, and force. Regardless of the type of physical property to be measured, the physical state that is to be measured must first be transformed into a unified form that can be sampled by a data acquisition system. The task of performing such transformations falls on devices called sensors. A data acquisition system is a collection of software and hardware that allows one to measure or control the physical characteristics of something in the real world. A complete data acquisition system consists of DAQ hardware, sensors and actuators, signal conditioning hardware, and a computer running DAQ software. If timing is necessary (such as for event mode DAQ systems), a separate compensated distributed timing system is required.

A sensor, which is a type of transducer , is a device that converts a physical property into a corresponding electrical signal (e.g., strain gauge, thermistor). An acquisition system to measure different properties depends on the sensors that are suited to detect those properties. Signal conditioning may be necessary if the signal from the transducer is not suitable for the DAQ hardware being used. The signal may need to be filtered, shaped, or amplified in most cases. Various other examples of signal conditioning might be bridge completion, providing current or voltage excitation to the sensor, isolation, and linearization. For transmission purposes, single ended analog signals, which are more susceptible to noise can be converted to differential signals. Once digitized, the signal can be encoded to reduce and correct transmission errors.

DAQ hardware

DAQ hardware is what usually interfaces between the signal and a PC. It could be in the form of modules that can be connected to the computer's ports (parallel, serial, USB, etc.) or cards connected to slots (S-100 bus, AppleBus, ISA, MCA, PCI, PCI-E, etc.) in a PC motherboard or in a modular crate (CAMAC, NIM, VME). Sometimes adapters are needed, in which case an external breakout box can be used.

DAQ cards often contain multiple components (multiplexer, ADC, DAC, TTL-IO, high-speed timers, RAM). These are accessible via a bus by a microcontroller, which can run small programs. A controller is more flexible than a hard-wired logic, yet cheaper than a CPU so it is permissible to block it with simple polling loops. For example: Waiting for a trigger, starting the ADC, looking up the time, waiting for the ADC to finish, move value to RAM, switch multiplexer, get TTL input, let DAC proceed with voltage ramp.

Today, signals from some sensors and Data Acquisition Systems can be streamed via Bluetooth.

DAQ device drivers

DAQ device drivers are needed for the DAQ hardware to work with a PC. The device driver performs low-level register writes and reads on the hardware while exposing API for developing user applications in a variety of programs.

Input devices

Hardware

DAQ software

Specialized DAQ software may be delivered with the DAQ hardware. Software tools used for building large-scale data acquisition systems include EPICS. Other programming environments that are used to build DAQ applications include ladder logic, Visual C++, Visual Basic, LabVIEW, and MATLAB.

See also

Related Research Articles

<span class="mw-page-title-main">Interrupt</span> Signal to a computer processor emitted by hardware or software

In digital computers, an interrupt is a request for the processor to interrupt currently executing code, so that the event can be processed in a timely manner. If the request is accepted, the processor will suspend its current activities, save its state, and execute a function called an interrupt handler to deal with the event. This interruption is often temporary, allowing the software to resume normal activities after the interrupt handler finishes, although the interrupt could instead indicate a fatal error.

<span class="mw-page-title-main">Motherboard</span> Main printed circuit board (PCB) for a computing device

A motherboard is the main printed circuit board (PCB) in general-purpose computers and other expandable systems. It holds and allows communication between many of the crucial electronic components of a system, such as the central processing unit (CPU) and memory, and provides connectors for other peripherals. Unlike a backplane, a motherboard usually contains significant sub-systems, such as the central processor, the chipset's input/output and memory controllers, interface connectors, and other components integrated for general use.

<span class="mw-page-title-main">Sound card</span> Expansion card that provides input and output of audio signals

A sound card is an internal expansion card that provides input and output of audio signals to and from a computer under the control of computer programs. The term sound card is also applied to external audio interfaces used for professional audio applications.

<span class="mw-page-title-main">Analog-to-digital converter</span> System that converts an analog signal into a digital signal

In electronics, an analog-to-digital converter is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a digital signal. An ADC may also provide an isolated measurement such as an electronic device that converts an analog input voltage or current to a digital number representing the magnitude of the voltage or current. Typically the digital output is a two's complement binary number that is proportional to the input, but there are other possibilities.

Direct memory access (DMA) is a feature of computer systems that allows certain hardware subsystems to access main system memory independently of the central processing unit (CPU).

<span class="mw-page-title-main">Serial port</span> Communication interface transmitting information sequentially

On computers, a serial port is a serial communication interface through which information transfers in or out sequentially one bit at a time. This is in contrast to a parallel port, which communicates multiple bits simultaneously in parallel. Throughout most of the history of personal computers, data has been transferred through serial ports to devices such as modems, terminals, various peripherals, and directly between computers.

<span class="mw-page-title-main">Software-defined radio</span> Radio communication system implemented in software

Software-defined radio (SDR) is a radio communication system where components that conventionally have been implemented in analog hardware are instead implemented by means of software on a computer or embedded system. While the concept of SDR is not new, the rapidly evolving capabilities of digital electronics render practical many processes which were once only theoretically possible.

<span class="mw-page-title-main">Micro Channel architecture</span>

Micro Channel architecture, or the Micro Channel bus, is a proprietary 16- or 32-bit parallel computer bus introduced by IBM in 1987 which was used on PS/2 and other computers until the mid-1990s. Its name is commonly abbreviated as "MCA", although not by IBM. In IBM products, it superseded the ISA bus and was itself subsequently superseded by the PCI bus architecture.

<span class="mw-page-title-main">Double data rate</span> Method of computer bus operation

In computing, double data rate (DDR) describes a computer bus that transfers data on both the rising and falling edges of the clock signal. This is also known as double pumped, dual-pumped, and double transition. The term toggle mode is used in the context of NAND flash memory.

<span class="mw-page-title-main">Mixed-signal integrated circuit</span> Integrated circuit

A mixed-signal integrated circuit is any integrated circuit that has both analog circuits and digital circuits on a single semiconductor die. Their usage has grown dramatically with the increased use of cell phones, telecommunications, portable electronics, and automobiles with electronics and digital sensors.

<span class="mw-page-title-main">Universal Software Radio Peripheral</span> Product family of software-defined radios

Universal Software Radio Peripheral (USRP) is a range of software-defined radios designed and sold by Ettus Research and its parent company, National Instruments. Developed by a team led by Matt Ettus, the USRP product family is commonly used by research labs, universities, and hobbyists.

<span class="mw-page-title-main">Analogue electronics</span> Electronic systems with a continuously variable signal

Analogue electronics are electronic systems with a continuously variable signal, in contrast to digital electronics where signals usually take only two levels. The term analogue describes the proportional relationship between a signal and a voltage or current that represents the signal. The word analogue is derived from the Greek word ανάλογος analogos meaning proportional.

<span class="mw-page-title-main">Physical computing</span>

Physical computing involves interactive systems that can sense and respond to the world around them. While this definition is broad enough to encompass systems such as smart automotive traffic control systems or factory automation processes, it is not commonly used to describe them. In a broader sense, physical computing is a creative framework for understanding human beings' relationship to the digital world. In practical use, the term most often describes handmade art, design or DIY hobby projects that use sensors and microcontrollers to translate analog input to a software system, and/or control electro-mechanical devices such as motors, servos, lighting or other hardware.

<span class="mw-page-title-main">Adapter (computing)</span> Adapter used in computing

An adapter in regard to computing can be either a hardware component (device) or software that allows two or more incompatible devices to be linked together for the purpose of transmitting and receiving data. Given an input, an adapter alters it in order to provide a compatible connection between the components of a system. Both software and hardware adapters are used in many different devices such as mobile phones, personal computers, servers and telecommunications networks for a wide range of purposes. Some adapters are built into devices, while the others can be installed on a computer's motherboard or connected as external devices.

In electronics and signal processing, signal conditioning is the manipulation of an analog signal in such a way that it meets the requirements of the next stage for further processing.

<span class="mw-page-title-main">Tecmar</span> American manufacturer

Tecmar Inc. was an American manufacturer of personal computer enhancement products based in Solon, Ohio. The company was founded in 1974 by Martin Alpert, M.D., and Carolyn Alpert. The company's first products were computerized medical equipment; the company shortly after pivoted to data acquisition boards for the first generation of microcomputers. Popular products included the Scientific Solutions LabMaster series of boards for S-100 and Apple Computer.

<span class="mw-page-title-main">Datacube Inc.</span>

Datacube Inc. (1978–2005) was an image processing company that developed real-time hardware and software products for the industrial, medical, military and scientific markets. The Datacube enabled data to be modeled and viewed in multiple dimensions.

<span class="mw-page-title-main">Biopac student lab</span>

The Biopac Student Lab is a proprietary teaching device and method introduced in 1995 as a digital replacement for aging chart recorders and oscilloscopes that were widely used in undergraduate teaching laboratories prior to that time. It is manufactured by BIOPAC Systems, Inc., of Goleta, California. The advent of low cost personal computers meant that older analog technologies could be replaced with powerful and less expensive computerized alternatives.

<span class="mw-page-title-main">CompactDAQ</span>

CompactDAQ is a data acquisition platform built by National Instruments that includes a broad set of compatible hardware and software. CompactDAQ integrates hardware for data I/O with LabVIEW software to enable engineers to collect, process and analyse sensor data. CompactDAQ systems are less expensive than equivalent systems within the NI PXI Platform.

<span class="mw-page-title-main">Pico Technology</span>

Pico Technology is a British manufacturer of high-precision PC-based oscilloscopes and automotive diagnostics equipment, founded in 1991. Their product range includes the PicoScope line of PC-based oscilloscopes, data loggers, automotive equipment, and most recently, handheld USB-based oscilloscopes. Since their inception in 1991, Pico Tech has been researching and developing PC-based oscilloscopes, when the market standard was analogue storage oscilloscopes. Pico Technology is one of two European scope manufacturers, and competes in the low to middle end of the instrumentation market.

References

  1. COMDEX Fall November 18, 1981 Las Vegas, NV, "Tecmar shows 20 IBM PC option card.. LabMaster, LabTender, DADIO, DeviceTender, IEEE-488"
  2. PC Magazine Vol1 No.1, "Taking the Measure" by David Bunnell, "Tecmar deployed 20 option cards for the IBM PC"
  3. PC Magazine Vol1 No.5, "Tecmar Triumph" by David Bunnell, Scientific Solutions releases 20 new products for the PC
  4. BYTE Vol7 No.1 "Scientific Solutions – Advertisement for data acquisition boards, IEEE-488 products
  5. Test&Measurement World Vol 11 No 10 Decade of Progress Award: Scientific SolutionsLabMaster First in PC Data

Further reading