This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Data degradation is the gradual corruption of computer data due to an accumulation of non-critical failures in a data storage device. It is also referred to as data decay, data rot or bit rot. [1] This results in a decline in data quality over time, even when the data is not being utilized. The concept of data degradation involves progressively minimizing data in interconnected processes, where data is used for multiple purposes at different levels of detail. At specific points in the process chain, data is irreversibly reduced to a level that remains sufficient for the successful completion of the following steps [2]
Data degradation in dynamic random-access memory (DRAM) can occur when the electric charge of a bit in DRAM disperses, possibly altering program code or stored data. DRAM may be altered by cosmic rays [3] or other high-energy particles. Such data degradation is known as a soft error. [4] ECC memory can be used to mitigate this type of data degradation. [5]
Data degradation results from the gradual decay of storage media over the course of years or longer. Causes vary by medium:
Below are several digital images illustrating data degradation, all consisting of 326,272 bits. The original photo is displayed first. In the next image, a single bit was changed from 0 to 1. In the next two images, two and three bits were flipped. On Linux systems, the binary difference between files can be revealed using cmp
command (e.g. cmp -b bitrot-original.jpg bitrot-1bit-changed.jpg
).
This deterioration can be caused by a variety of factors that impact the reliability and integrity of digital information, including physical factors, software errors, security breaches, human error, obsolete technology, and unauthorized access incidents. [14] [15] [16] [17]
Most disk, disk controller and higher-level systems are subject to a slight chance of unrecoverable failure. With ever-growing disk capacities, file sizes, and increases in the amount of data stored on a disk, the likelihood of the occurrence of data decay and other forms of uncorrected and undetected data corruption increases. [18]
Low-level disk controllers typically employ error correction codes (ECC) to correct erroneous data. [19]
Higher-level software systems may be employed to mitigate the risk of such underlying failures by increasing redundancy and implementing integrity checking, error correction codes and self-repairing algorithms. [20] The ZFS file system was designed to address many of these data corruption issues. [21] The Btrfs file system also includes data protection and recovery mechanisms, [22] as does ReFS. [23]
Computer data storage or digital data storage is a technology consisting of computer components and recording media that are used to retain digital data. It is a core function and fundamental component of computers.
Disk storage is a data storage mechanism based on a rotating disk. The recording employs various electronic, magnetic, optical, or mechanical changes to the disk's surface layer. A disk drive is a device implementing such a storage mechanism. Notable types are hard disk drives (HDD), containing one or more non-removable rigid platters; the floppy disk drive (FDD) and its removable floppy disk; and various optical disc drives (ODD) and associated optical disc media.
In information theory and coding theory with applications in computer science and telecommunications, error detection and correction (EDAC) or error control are techniques that enable reliable delivery of digital data over unreliable communication channels. Many communication channels are subject to channel noise, and thus errors may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting such errors, while error correction enables reconstruction of the original data in many cases.
A hard disk drive (HDD), hard disk, hard drive, or fixed disk is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with magnetic material. The platters are paired with magnetic heads, usually arranged on a moving actuator arm, which read and write data to the platter surfaces. Data is accessed in a random-access manner, meaning that individual blocks of data can be stored and retrieved in any order. HDDs are a type of non-volatile storage, retaining stored data when powered off. Modern HDDs are typically in the form of a small rectangular box.
RAID is a data storage virtualization technology that combines multiple physical data storage components into one or more logical units for the purposes of data redundancy, performance improvement, or both. This is in contrast to the previous concept of highly reliable mainframe disk drives known as single large expensive disk (SLED).
In computing, a block, sometimes called a physical record, is a sequence of bytes or bits, usually containing some whole number of records, having a maximum length; a block size. Data thus structured are said to be blocked. The process of putting data into blocks is called blocking, while deblocking is the process of extracting data from blocks. Blocked data is normally stored in a data buffer, and read or written a whole block at a time. Blocking reduces the overhead and speeds up the handling of the data stream. For some devices, such as magnetic tape and CKD disk devices, blocking reduces the amount of external storage required for the data. Blocking is almost universally employed when storing data to 9-track magnetic tape, NAND flash memory, and rotating media such as floppy disks, hard disks, and optical discs.
In information technology, a backup, or data backup is a copy of computer data taken and stored elsewhere so that it may be used to restore the original after a data loss event. The verb form, referring to the process of doing so, is "back up", whereas the noun and adjective form is "backup". Backups can be used to recover data after its loss from data deletion or corruption, or to recover data from an earlier time. Backups provide a simple form of IT disaster recovery; however not all backup systems are able to reconstitute a computer system or other complex configuration such as a computer cluster, active directory server, or database server.
Digital obsolescence is the risk of data loss because of inabilities to access digital assets, due to the hardware or software required for information retrieval being repeatedly replaced by newer devices and systems, resulting in increasingly incompatible formats. While the threat of an eventual "digital dark age" was initially met with little concern until the 1990s, modern digital preservation efforts in the information and archival fields have implemented protocols and strategies such as data migration and technical audits, while the salvage and emulation of antiquated hardware and software address digital obsolescence to limit the potential damage to long-term information access.
Data corruption refers to errors in computer data that occur during writing, reading, storage, transmission, or processing, which introduce unintended changes to the original data. Computer, transmission, and storage systems use a number of measures to provide end-to-end data integrity, or lack of errors.
Write once read many (WORM) describes a data storage device in which information, once written, cannot be modified. This write protection affords the assurance that the data cannot be tampered with once it is written to the device, excluding the possibility of data loss from human error, computer bugs, or malware.
Preservation of documents, pictures, recordings, digital content, etc., is a major aspect of archival science. It is also an important consideration for people who are creating time capsules, family history, historical documents, scrapbooks and family trees. Common storage media are not permanent, and there are few reliable methods of preserving documents and pictures for the future.
In computing, data recovery is a process of retrieving deleted, inaccessible, lost, corrupted, damaged, or formatted data from secondary storage, removable media or files, when the data stored in them cannot be accessed in a usual way. The data is most often salvaged from storage media such as internal or external hard disk drives (HDDs), solid-state drives (SSDs), USB flash drives, magnetic tapes, CDs, DVDs, RAID subsystems, and other electronic devices. Recovery may be required due to physical damage to the storage devices or logical damage to the file system that prevents it from being mounted by the host operating system (OS).
Data scrubbing is an error correction technique that uses a background task to periodically inspect main memory or storage for errors, then corrects detected errors using redundant data in the form of different checksums or copies of data. Data scrubbing reduces the likelihood that single correctable errors will accumulate, leading to reduced risks of uncorrectable errors.
In computer main memory, auxiliary storage and computer buses, data redundancy is the existence of data that is additional to the actual data and permits correction of errors in stored or transmitted data. The additional data can simply be a complete copy of the actual data, or only select pieces of data that allow detection of errors and reconstruction of lost or damaged data up to a certain level.
A bad sector in computing is a disk sector on a disk storage unit that is unreadable. Upon taking damage, all information stored on that sector is lost. When a bad sector is found and marked, the operating system like Windows or Linux will skip it in the future. Bad sectors are a threat to information security in the sense of data remanence.
Disk encryption is a technology which protects information by converting it into code that cannot be deciphered easily by unauthorized people or processes. Disk encryption uses disk encryption software or hardware to encrypt every bit of data that goes on a disk or disk volume. It is used to prevent unauthorized access to data storage.
In computer disk storage, a sector is a subdivision of a track on a magnetic disk or optical disc. For most disks, each sector stores a fixed amount of user-accessible data, traditionally 512 bytes for hard disk drives (HDDs), and 2048 bytes for CD-ROMs, DVD-ROMs and BD-ROMs. Newer HDDs and SSDs use 4096 byte (4 KiB) sectors, which are known as the Advanced Format (AF).
The preservation of optical media is essential because it is a resource in libraries, and stores audio, video, and computer data. While optical discs are generally more reliable and durable than older media types, environmental conditions and/or poor handling can result in lost information.
Btrfs is a computer storage format that combines a file system based on the copy-on-write (COW) principle with a logical volume manager, developed together. It was created by Chris Mason in 2007 for use in Linux, and since November 2013, the file system's on-disk format has been declared stable in the Linux kernel.
In digital storage, a Medium Error is a class of errors that a storage device can experience, which imply that a physical problem was encountered when trying to access the device. The word "medium" refers to the physical storage layer, the medium on which the data is stored; as opposed to errors related to e.g. protocol, device/controller/driver state, etc.
High temperature and humidity and fluctuations may cause the magnetic and base layers in a reel of tape to separate, or cause adjacent loops to block together. High temperatures may also weaken the magnetic signal, and ultimately de-magnetise the magnetic layer.
The longevity of magnetic media is most seriously affected by processes that attack the binder resin. Moisture from the air is absorbed by the binder and reacts with the resin. The result is a gummy residue that can deposit on tape heads and cause tape layers to stick together. Reaction with moisture also can result in breaks in the long molecular chains of the binder. This weakens the physical properties of the binder and can result in a lack of adhesion to the backing. These reactions are greatly accelerated by the presence of acids. Typical sources would be the usual pollutant gases in the air, such as sulphur dioxide (SO2) and nitrous oxides (NOx), which react with moist air to form acids. Though acid inhibitors are usually built into the binder layer, over time they can lose their effectiveness.