Paper data storage

Last updated

Paper data storage refers to the use of paper as a data storage device. This includes writing, illustrating, and the use of data that can be interpreted by a machine or is the result of the functioning of a machine. A defining feature of paper data storage is the ability of humans to produce it with only simple tools and interpret it visually.

Contents

Though now mostly obsolete, paper was once an important form of computer data storage as both paper tape and punch cards were a common staple of working with computers before the 1980s.

History

Before paper was used for storing data, it had been used in several applications for storing instructions to specify a machine's operation. The earliest use of paper to store instructions for a machine was the work of Basile Bouchon who, in 1725, used punched paper rolls to control textile looms. This technology was later developed into the wildly successful Jacquard loom. The 19th century saw several other uses of paper for controlling machines. In 1846, telegrams could be prerecorded on punched tape and rapidly transmitted using Alexander Bain's automatic telegraph. Several inventors took the concept of a mechanical organ and used paper to represent the music.

IBM1130CopyCard.agr.jpg

Binary punched card

In the late 1880s Herman Hollerith invented the recording of data on a medium that could then be read by a machine. Prior uses of machine readable media, above, had been for control (automatons, piano rolls, looms, ...), not data. "After some initial trials with paper tape, he settled on punched cards..." [1] Hollerith's method was used in the 1890 census. Hollerith's company eventually became the core of IBM.

Other technologies were also developed that allowed machines to work with marks on paper instead of punched holes. This technology was widely used for tabulating votes and grading standardized tests. Banks used magnetic ink on checks, supporting MICR scanning.

In an early electronic computing device, the Atanasoff–Berry Computer, electric sparks were used to single small holes in paper cards to represent binary data. The altered dielectric constant of the paper at the location of the holes could then be used to read the binary data back into the machine by means of electric sparks of lower voltage than the sparks used to create the holes. This form of paper data storage was never made reliable and was not used in any subsequent machine.

Modern techniques

1D barcodes

Barcodes make it possible for any object that was to be sold or transported to have some computer readable information securely attached to it. Universal Product Code barcodes, first used in 1974, are ubiquitous today. Some people recommend a width of at least 3 pixels for each minimum-width gap and each minimum-width bar for 1D barcodes. The density is about 50 bits per linear inch (about 2 bit/mm).

2D barcodes

A JAB Code that encodes the text "Wikipedia". JAB-code.png
A JAB Code that encodes the text "Wikipedia".

2D barcodes allow to store much more data on paper, up to 2.9 kbyte per barcode. It is recommended to have a width of at least 4 pixels—e.g., a 4 × 4 pixel = 16 pixel module. [2]

Limits

The limits of data storage depend on the technology to write and read such data. The theoretical limits assume a scanner that can perfectly reproduce the printed image at its printing resolution, and a program which can accurately interpret such an image. For example, an 8″ × 10″ 600 dpi black-and-white image contains 3.43 MiB of data, as does a 300 dpi CMYK printed image. A 2,400 ppi True color (24-bit) image contains about 1.29 GiB of information; printing an image maintaining this data would require a printing resolution of about 120,000 dpi in black and white, or 60,000 dpi with CMYK dots.

See also

Related Research Articles

The bit is the most basic unit of information in computing and digital communication. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represented as either "1" or "0", but other representations such as true/false, yes/no, on/off, or +/ are also widely used.

<span class="mw-page-title-main">Printer (computing)</span> Computer peripheral that prints text or graphics

In computing, a printer is a peripheral machine which makes a durable representation of graphics or text, usually on paper. While most output is human-readable, bar code printers are an example of an expanded use for printers. Different types of printers include 3D printers, inkjet printers, laser printers, and thermal printers.

<span class="mw-page-title-main">Computer data storage</span> Storage of digital data readable by computers

Computer data storage or digital data storage is a technology consisting of computer components and recording media that are used to retain digital data. It is a core function and fundamental component of computers.

<span class="mw-page-title-main">Jacquard machine</span> Control device attached to weaving looms

The Jacquard machine is a device fitted to a loom that simplifies the process of manufacturing textiles with such complex patterns as brocade, damask and matelassé. The resulting ensemble of the loom and Jacquard machine is then called a Jacquard loom. The machine was patented by Joseph Marie Jacquard in 1804, based on earlier inventions by the Frenchmen Basile Bouchon (1725), Jean Baptiste Falcon (1728), and Jacques Vaucanson (1740). The machine was controlled by a "chain of cards"; a number of punched cards laced together into a continuous sequence. Multiple rows of holes were punched on each card, with one complete card corresponding to one row of the design.

<span class="mw-page-title-main">Punched card</span> Paper-based recording medium

A punched card is a piece of card stock that stores digital data using punched holes. Punched cards were once common in data processing and the control of automated machines.

<span class="mw-page-title-main">Raster graphics</span> Image display as a 2D grid of pixels

In computer graphics and digital photography, a raster graphic represents a two-dimensional picture as a rectangular matrix or grid of pixels, viewable via a computer display, paper, or other display medium. A raster image is technically characterized by the width and height of the image in pixels and by the number of bits per pixel. Raster images are stored in image files with varying dissemination, production, generation, and acquisition formats.

<span class="mw-page-title-main">Machine-readable medium and data</span> Medium capable of storing data in a format readable by a machine

In communications and computing, a machine-readable medium is a medium capable of storing data in a format easily readable by a digital computer or a sensor. It contrasts with human-readable medium and data.

<span class="mw-page-title-main">Punched tape</span> Data storage device

Punched tape or perforated paper tape is a form of data storage device that consists of a long strip of paper through which small holes are punched. It was developed from and was subsequently used alongside punched cards, the difference being that the tape is continuous.

<span class="mw-page-title-main">Barcode</span> Optical machine-readable representation of data

A barcode or bar code is a method of representing data in a visual, machine-readable form. Initially, barcodes represented data by varying the widths, spacings and sizes of parallel lines. These barcodes, now commonly referred to as linear or one-dimensional (1D), can be scanned by special optical scanners, called barcode readers, of which there are several types.

<span class="mw-page-title-main">Image scanner</span> Device that optically scans images, printed text

An image scanner is a device that optically scans images, printed text, handwriting, or an object and converts it to a digital image. The most common type of scanner used in offices and in the home is the flatbed scanner, where the document is placed on a glass window for scanning. A sheetfed scanner, which moves the page across an image sensor using a series of rollers, may be used to scan one document at a time or multiple, as in an automatic document feeder. A handheld scanner is a portable version of an image scanner that can be used on any flat surface. Scans are usually downloaded to the computer that the scanner is connected to, although some scanners are able to store scans on standalone flash media.

Electronic data processing (EDP) or business information processing can refer to the use of automated methods to process commercial data. Typically, this uses relatively simple, repetitive activities to process large volumes of similar information. For example: stock updates applied to an inventory, banking transactions applied to account and customer master files, booking and ticketing transactions to an airline's reservation system, billing for utility services. The modifier "electronic" or "automatic" was used with "data processing" (DP), especially c. 1960, to distinguish human clerical data processing from that done by computer.

<span class="mw-page-title-main">Unit record equipment</span> Electromechanical machines which processed data using punch cards

Starting at the end of the nineteenth century, well before the advent of electronic computers, data processing was performed using electromechanical machines collectively referred to as unit record equipment, electric accounting machines (EAM) or tabulating machines. Unit record machines came to be as ubiquitous in industry and government in the first two-thirds of the twentieth century as computers became in the last third. They allowed large volume, sophisticated data-processing tasks to be accomplished before electronic computers were invented and while they were still in their infancy. This data processing was accomplished by processing punched cards through various unit record machines in a carefully choreographed progression. This progression, or flow, from machine to machine was often planned and documented with detailed flowcharts that used standardized symbols for documents and the various machine functions. All but the earliest machines had high-speed mechanical feeders to process cards at rates from around 100 to 2,000 per minute, sensing punched holes with mechanical, electrical, or, later, optical sensors. The operation of many machines was directed by the use of a removable plugboard, control panel, or connection box. Initially all machines were manual or electromechanical. The first use of an electronic component was in 1937 when a photocell was used in a Social Security bill-feed machine. Electronic components were used on other machines beginning in the late 1940s.

<span class="mw-page-title-main">Keypunch</span> Device for punching holes into paper cards

A keypunch is a device for precisely punching holes into stiff paper cards at specific locations as determined by keys struck by a human operator. Other devices included here for that same function include the gang punch, the pantograph punch, and the stamp. The term was also used for similar machines used by humans to transcribe data onto punched tape media.

<span class="mw-page-title-main">English Electric DEUCE</span> Early British computer

The DEUCE was one of the earliest British commercially available computers, built by English Electric from 1955. It was the production version of the Pilot ACE, itself a cut-down version of Alan Turing's ACE.

<span class="mw-page-title-main">Tabulating machine</span> Late 19th-century machine for summarizing information stored on punch cards

The tabulating machine was an electromechanical machine designed to assist in summarizing information stored on punched cards. Invented by Herman Hollerith, the machine was developed to help process data for the 1890 U.S. Census. Later models were widely used for business applications such as accounting and inventory control. It spawned a class of machines, known as unit record equipment, and the data processing industry.

<span class="mw-page-title-main">International Computers and Tabulators</span>

International Computers and Tabulators or ICT was a British computer manufacturer, formed in 1959 by a merger of the British Tabulating Machine Company (BTM) and Powers-Samas. In 1963 it acquired the business computer divisions of Ferranti. It exported computers to many countries and in 1968 became part of International Computers Limited (ICL).

The ICT 1301 and its smaller derivative ICT 1300 were early business computers from International Computers and Tabulators. Typical of mid-sized machines of the era, they used core memory, drum storage and punched cards, but they were unusual in that they were based on decimal logic instead of binary.

A card reader is a data input device that reads data from a card-shaped storage medium and provides the data to a computer. Card readers can acquire data from a card via a number of methods, including: optical scanning of printed text or barcodes or holes on punched cards, electrical signals from connections made or interrupted by a card's punched holes or embedded circuitry, or electronic devices that can read plastic cards embedded with either a magnetic strip, computer chip, RFID chip, or another storage medium.

<span class="mw-page-title-main">Edge-notched card</span> Index card with notches to store data

Edge-notched cards or edge-punched cards are a system used to store a small amount of binary or logical data on paper index cards, encoded via the presence or absence of notches in the edges of the cards. The notches allow efficient sorting of a large number of cards in a paper-based database, as well as the selection of specific cards matching multiple desired criteria.

<span class="mw-page-title-main">Punched card input/output</span> Computer peripheral device

A computer punched card reader or just computer card reader is a computer input device used to read computer programs in either source or executable form and data from punched cards. A computer card punch is a computer output device that punches holes in cards. Sometimes computer punch card readers were combined with computer card punches and, later, other devices to form multifunction machines.

References

  1. "Herman Hollerith". www.columbia.edu.
  2. Using barcodes in documents Best practices (PDF), Tampa, FL: Accusoft, 2007, archived from the original (PDF) on 2012-05-24, retrieved 2024-12-30