Computer memory and data storage types |
---|
Volatile |
Non-volatile |
5D optical data storage (also branded as Superman memory crystal, [1] a reference to the Kryptonian memory crystals from the Superman franchise) is an experimental nanostructured glass for permanently recording digital data using a femtosecond laser writing process. [2] Discs using this technology could be capable of storing up to 360 terabytes worth of data [3] [4] (at the largest size, 12 cm discs) for billions of years. [5] [6] [7] [8] The concept was experimentally demonstrated in 2013. [9] [10] [11] Hitachi and Microsoft have researched glass-based optical storage techniques, the latter under the name Project Silica. [12] [13]
The "5-dimensional" descriptor is because, unlike marking only on the surface of a 2D piece of paper or magnetic tape, this method of encoding uses two optical dimensions and three spatial co-ordinates to write throughout the material, which suggested the name '5D data crystal'. No exotic higher dimensional properties are involved. The size, orientation and three-dimensional position of the nanostructures comprise the so-called five dimensions. [3]
The concept is to store data optically in non-photosensitive transparent materials such as fused quartz, which has high chemical stability. Recording data using a femtosecond-laser was first proposed and demonstrated in 1996. [1] [14] [15] The storage medium consists of fused quartz, where the spatial dimensions, intensity, polarization, and wavelength are used to modulate data. By introducing gold or silver nanoparticles embedded in the material, their plasmonic properties can be exploited. [1]
According to the University of Southampton:
The 5-dimensional discs [have] tiny patterns printed on 3 layers within the discs. Depending on the angle they are viewed from, these patterns can look completely different. This may sound like science fiction, but it's basically a really fancy optical illusion. In this case, the 5 dimensions inside of the discs are the size and orientation in relation to the 3-dimensional position of the nanostructures. The concept of being 5-dimensional means that one disc has several different images depending on the angle that one views it from, and the magnification of the microscope used to view it. Basically, each disc has multiple layers of micro and macro level images. [16]
Recorded data can be read with a combination of an optical microscope and a polarizer. [17]
The technique was first demonstrated in 2009 by researchers at the Swinburne University of Technology [18] and in 2010 by Kazuyuki Hirao's laboratory at the Kyoto University, [19] and developed further by Peter Kazansky's research group at the Optoelectronics Research Centre, University of Southampton. [20] [21] [22] [23] Discs recorded from that time have been tested for 3100 hours at 100°C and shown to still work "perfectly" ten years later. [24]
In 2018, Professor Peter Kazansky used the technology to store a copy of Isaac Asimov's Foundation trilogy, which was launched into space aboard Elon Musk's Tesla Roadster in association with the Arch Mission Foundation. [25]
In 2024, Kazansky's group encoded the three billion character human genome and etched it onto a coin-sized 5D disc. [26] It includes a visual key explaining how to use it, in homage to the Pioneer plaques that were placed on board the 1972 Pioneer 10 and 1973 Pioneer 11 spacecrafts. It is stored in the Memory of Mankind archive, located in the world's oldest salt mine in Hallstatt, Austria. [26]
An optical disc is a flat, usually disc-shaped object that stores information in the form of physical variations on its surface that can be read with the aid of a beam of light. Optical discs can be reflective, where the light source and detector are on the same side of the disc, or transmissive, where light shines through the disc to be detected on the other side.
Holography is a technique that enables a wavefront to be recorded and later reconstructed. It is best known as a method of generating three-dimensional images, and has a wide range of other uses, including data storage, microscopy, and interferometry. In principle, it is possible to make a hologram for any type of wave.
All-silica fiber, or silica-silica fiber, is an optical fiber whose core and cladding are made of silica glass. The refractive index of the core glass is higher than that of the cladding. These fibers are typically step-index fibers. The cladding of an all-silica fiber should not be confused with the polymer overcoat of the fiber.
A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic lattices of semiconductors affect their conductivity of electrons. Photonic crystals occur in nature in the form of structural coloration and animal reflectors, and, as artificially produced, promise to be useful in a range of applications.
Fused quartz, fused silica or quartz glass is a glass consisting of almost pure silica (silicon dioxide, SiO2) in amorphous (non-crystalline) form. This differs from all other commercial glasses, such as soda-lime glass, lead glass, or borosilicate glass, in which other ingredients are added which change the glasses' optical and physical properties, such as lowering the melt temperature, the spectral transmission range, or the mechanical strength. Fused quartz, therefore, has high working and melting temperatures, making it difficult to form and less desirable for most common applications, but is much stronger, more chemically resistant, and exhibits lower thermal expansion, making it more suitable for many specialized uses such as lighting and scientific applications.
Non-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retain stored information even after power is removed. In contrast, volatile memory needs constant power in order to retain data.
Arsenic trisulfide is the inorganic compound with the formula As2S3. It is a dark yellow solid that is insoluble in water. It also occurs as the mineral orpiment, which has been used as a pigment called King's yellow. It is produced in the analysis of arsenic compounds. It is a group V/VI, intrinsic p-type semiconductor and exhibits photo-induced phase-change properties.
In optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond or less. Such pulses have a broadband optical spectrum, and can be created by mode-locked oscillators. Amplification of ultrashort pulses almost always requires the technique of chirped pulse amplification, in order to avoid damage to the gain medium of the amplifier.
An optical neural network is a physical implementation of an artificial neural network with optical components. Early optical neural networks used a photorefractive Volume hologram to interconnect arrays of input neurons to arrays of output with synaptic weights in proportion to the multiplexed hologram's strength. Volume holograms were further multiplexed using spectral hole burning to add one dimension of wavelength to space to achieve four dimensional interconnects of two dimensional arrays of neural inputs and outputs. This research led to extensive research on alternative methods using the strength of the optical interconnect for implementing neuronal communications.
Chalcogenide glass is a glass containing one or more heavy chalcogens. Chalcogenide materials behave rather differently from oxides, in particular their lower band gaps contribute to very dissimilar optical and electrical properties.
Optical storage refers to a class of data storage systems that use light to read or write data to an underlying optical media. Although a number of optical formats have been used over time, the most common examples are optical disks like the compact disc (CD) and DVD. Reading and writing methods have also varied over time, but most modern systems as of 2023 use lasers as the light source and use it both for reading and writing to the discs. Britannica notes that it "uses low-power laser beams to record and retrieve digital (binary) data."
Nanoimprint lithography (NIL) is a method of fabricating nanometer-scale patterns. It is a simple nanolithography process with low cost, high throughput and high resolution. It creates patterns by mechanical deformation of imprint resist and subsequent processes. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting. Adhesion between the resist and the template is controlled to allow proper release.
Ultrafast laser spectroscopy is a category of spectroscopic techniques using ultrashort pulse lasers for the study of dynamics on extremely short time scales. Different methods are used to examine the dynamics of charge carriers, atoms, and molecules. Many different procedures have been developed spanning different time scales and photon energy ranges; some common methods are listed below.
Holographic data storage is a potential technology in the area of high-capacity data storage. While magnetic and optical data storage devices rely on individual bits being stored as distinct magnetic or optical changes on the surface of the recording medium, holographic data storage records information throughout the volume of the medium and is capable of recording multiple images in the same area utilizing light at different angles.
3D optical data storage is any form of optical data storage in which information can be recorded or read with three-dimensional resolution.
The Hyper CD-ROM is a claimed optical data storage device similar to the CD-ROM with a multilayer 3D structure, invented by Romanian scientist Eugen Pavel.
Multiphoton lithography is similar to standard photolithography techniques; structuring is accomplished by illuminating negative-tone or positive-tone photoresists via light of a well-defined wavelength. The main difference is the avoidance of photomasks. Instead, two-photon absorption is utilized to induce a change in the solubility of the resist for appropriate developers.
A nanolaser is a laser that has nanoscale dimensions and it refers to a micro-/nano- device which can emit light with light or electric excitation of nanowires or other nanomaterials that serve as resonators. A standard feature of nanolasers includes their light confinement on a scale approaching or suppressing the diffraction limit of light. These tiny lasers can be modulated quickly and, combined with their small footprint, this makes them ideal candidates for on-chip optical computing.
Arch Mission Foundation is a non-profit organization whose goal is to create multiple redundant repositories of human knowledge around the Solar System, including on Earth. The organization was founded by Nova Spivack and Nick Slavin in 2015 and incorporated in 2016.
In quantum computing, quantum memory is the quantum-mechanical version of ordinary computer memory. Whereas ordinary memory stores information as binary states, quantum memory stores a quantum state for later retrieval. These states hold useful computational information known as qubits. Unlike the classical memory of everyday computers, the states stored in quantum memory can be in a quantum superposition, giving much more practical flexibility in quantum algorithms than classical information storage.
{{cite book}}
: |journal=
ignored (help)