Twistor memory

Last updated

Twistor memory is a form of computer memory formed by wrapping magnetic tape around a current-carrying wire. Operationally, twistor was very similar to core memory. Twistor could also be used to make ROM memories, including a re-programmable form known as piggyback twistor. Both forms were able to be manufactured using automated processes, which was expected to lead to much lower production costs than core-based systems.

Contents

Introduced by Bell Labs in 1957, the first commercial use was in their 1ESS switch which went into operation in 1965. Twistor was used only briefly in the late 1960s and early 1970s, when semiconductor memory devices replaced almost all earlier memory systems. The basic ideas behind twistor also led to the development of bubble memory, although this had a similarly short commercial lifespan.

Core memory

Construction

Diagram of a 4x4 plane of magnetic-core memory in an X/Y line coincident-current setup. X and Y are drive lines, S is sense, Z is inhibit. Arrows indicate the direction of current for writing. Coincident-current magnetic core.svg
Diagram of a 4×4 plane of magnetic-core memory in an X/Y line coincident-current setup. X and Y are drive lines, S is sense, Z is inhibit. Arrows indicate the direction of current for writing.

In core memory, small ring-shaped magnets - the cores - are threaded by two crossed wires, X and Y, to make a matrix known as a plane. When one X and one Y wire are powered, a magnetic field is generated at a 45-degree angle to the wires. The core magnets sit on the wires at a 45-degree angle, so the single core wrapped around the crossing point of the powered X and Y wires will be affected by the induced field.

The materials used for the core magnets were specially chosen to have a very "square" magnetic hysteresis pattern. This meant that fields just below a certain threshold will do nothing, but those just above this threshold will cause the core to be affected by that magnetic field; it will abruptly flip its magnetization state. The square pattern and sharp flipping states ensures that a single core can be addressed within a grid; nearby cores will see a slightly different field, and not be affected.

Data retrieval

The basic operation in a core memory is writing. This is accomplished by powering a selected X and Y wire both to the current level that will, by itself, create ½ the critical magnetic field. This will cause the field at the crossing point to be greater than the core's saturation point, and the core will pick up the external field. Ones and zeros are represented by the direction of the field, which can be set simply by changing the direction of the current flow in one of the two wires.

In core memory, a third wire - the sense/inhibit line - is needed to write or read a bit. Reading uses the process of writing; the X and Y lines are powered in the same fashion that they would be to write a "0" to the selected core. If that core held a "1" at that time, then the magnetic state flips to a "0" and the transition causes a short pulse of electricity to be induced into the sense/inhibit line. If no pulse is seen, then no flip occurred, thus the core already held a "0". This process is destructive; if the core did hold a "1", that pattern is destroyed during the read, and has to be re-set in a subsequent operation.

The sense/inhibit line is shared by all of the cores in a particular plane, meaning that only one bit can be read (or written) at once. Core planes were typically stacked in order to store one bit of a word per plane, and a word could be read or written in a single operation by working all of the planes at once.

Between reads or writes the data was stored magnetically. This means that core is a non-volatile memory.

Manufacturing

Manufacturing core was a major issue. The X and Y wires had to be threaded through the cores in a weave pattern, and the sense/inhibit line passed through every core in a plane. In spite of considerable effort, no one successfully automated the production of core,[ citation needed ] which remained a manual task into the 1970s. To increase memory density one had to use smaller cores, which greatly increased the difficulty of wiring them onto the lines.

Twistor

An early iteration of the Twistor comprised a twisted ferromagnetic wire threaded through a series of concentric solenoids. The longer solenoid is the SENSE coil, the shorter one the WRITE coil. A single bit was written by pulsing the WRITE coil with a + (1) or - (0) current sufficient to magnetize the helical area beneath the coil in one of two directions. At one end of the stretched wire was the READ solenoid - when pulsed it sent an acoustic wave through the wire. As the acoustic pulse passed under each SENSE coil it induced a small electrical pulse, either + or - depending on the direction of magnetization of the region of the wire. Thus with each pulse a "byte" could be read out serially.

Twistor was similar in concept to core memory, but replaced the circular magnets with magnetic tape to store the patterns. The tape was wrapped around one set of the wires, the equivalent of the X line, in such a way that it formed a 45-degree helix. The Y wires were replaced by solenoids wrapping a number of twistor wires. Selection of a particular bit was the same as in core, with one X and Y line being powered, generating a field at 45 degrees. The magnetic tape was specifically selected to only allow magnetization along the length of the tape, so only a single point of the twistor would have the right direction of field to become magnetized.

The original twistor system used permalloy tape wrapped around a 3 mil copper wire. For any given length of wire, the tape was wound up over only the first half. The copper wire was then bent at the point where the tape ended, and ran back alongside the portion with the tape, forming a return conductor. This meant all the connections were at one end. Several such twistor lines were laid side-by-side and then laminated into a PET film plastic sheet, with the twistors and their return wires about 1/10th of an inch apart. A typical tape might have five twistor wires and their returns, so the sheet was just over an inch wide. The solenoid was similarly constructed, consisting of a number of 0.15 inch wide copper tapes laminated into a plastic tape of the same basic dimensions as the twistor. Unlike a traditional solenoid with many turns of wire around an open core, this system was essentially nothing more than single wires in a sheet of plastic.

To build the complete memory system, a sheet of the solenoid was laid out flat, say along the X direction, and then a sheet of the twistor was laid on top at right angles to it along the Y axis. The solenoid tape was then folded over, so that it wrapped the twistor sheet, producing a series of U-shaped solenoids. Now another layer of the solenoid tape is laid over the first, the twistor tape folded over so it now runs along the negative Y axis across the top of the new solenoid tape, and then the solenoid tape is folded over to form a second set of loops. This process continues until the twistor strip is "used up", forming a compact cube of memory. Along one side of the memory, connected to each of the solenoid loops, was a series of small cores used solely for switching (their original purpose, development as a memory came later).

The main reason for Bell's development of twistor is that the process could be highly automated. Although the folding process that completed the twistor might be carried out by hand, the layup and laminating of the sheets was easily handled by machine. Improved versions of twistor also wrapped the section of bare copper initially used solely for the return path, thereby doubling density without any changes to the production techniques.

Operation

Writing to twistor was effectively identical to core; a particular bit was selected by powering one of the twistor wires and one of the solenoid loops to one half of the required power, such that the required field strength was created only at the intersection of the two.

Reading used a different process. Unlike core, twistor did not have a sense/inhibit line. Instead, it used a larger current in the solenoid, large enough to flip all of the bits in that loop, and then used the twistor wires as the read line.

Twistor was thus read and written one plane at a time, rather than in core, where only one bit per plane could be used at once.

Permanent magnet twistor

Twistor could be modified to produce a ROM that could be easily re-programmed. To do this, one-half of each solenoid loop was replaced with an aluminum card into which tiny vicalloy bar magnets were embedded. As the solenoids have to be complete circuits in order for current to flow through them, they were still inserted as folded sheets, but in this case the loop was inserted between the folds of twistor instead of around them. This allowed the single sheet to act as one half of a solenoid loop for two folds of the twistor, above and below. To complete the loop, the card of magnets was placed on the other side of the twistor tape.

Reads were performed by powering the solenoid to a point about half of that needed to produce a write. This field was "reflected" by the aluminum sheet, closing the loop, magnetically. The resulting field was greater than the write strength, causing the permalloy state to flip. If the bit was beside an unmagnetized bar magnet in the card, the field was not opposed and the flip caused a current pulse in the twistor wire, reading a "1". However, by magnetizing the bar at that bit, the bar magnet opposed the field being created by the solenoid current, causing it to be below the write strength, and preventing the flip. This read a "0".

The permanent magnet twistor (PMT) was re-programmed by removing the plates and placing them over a custom writer. Vicalloy was used because it required much more power to re-magnetize than the permalloy tape, so that the system would never come close to re-setting the permanent magnets while in use in the memory system. The writer system used much larger currents that overcame this resistance.

The PMT that was used in the 1ESS system used modules with 128 cards with 2818 magnets (for 64 44-bit words) on each. This produced a module with 8192 words (8 kibiwords). The complete store used 16 modules for a total of 131,072 words (128 kibiwords), equivalent to 720,896 8-bit bytes (704 KiB).

Piggyback twistor

Another form of twistor ROM replaced the permanent magnet cards with a second magnetic tape wrapped around the first on the twistor lines, in a "piggyback" configuration. This tape was coated with coballoy instead of permalloy, which is much "harder" magnetically, requiring about twice the field in order to flip. To make the system even harder, the coballoy tape was about two and a half times thicker than the permalloy one, so the resulting field strength was five times. The external current required to flip the state of the coballoy tape was about 15 times that of the normal operational current.

Read operations in the piggyback are identical to the permanent magnet version. Writes were slightly more complex, due to the fact that piggyback twistors all featured the magnetic tape along the entire length of the X wire. This meant that any one solenoid was wrapping both the bit that is being written as well as the one on the section of return wire. To set the one both and not the other, the solenoid was first powered in one direction and then the other, while the current in the twistor line remained constant. This created two magnetic fields in turn, one aligned with the first section of wire and then the second. All reads and writes were carried out on paired bits in this fashion.

Applications

Twistor was used in a number of applications. Much of the development funding was supplied by the US Air Force, as twistor was to be used as the main memory in the LIM-49 Nike Zeus project.

In the United States the Bell System (American Telephone & Telegraph) also used twistors with permanent magnets as the "Program Store" or main memory in their first electronic telephone switching system, the 1ESS as well as others in the ESS series of electronic telephone switches, and did so up to the 4ESS switch introduced in 1976 and sold into the 1980s.

In addition, twistor was used in the Traffic Service Position System (TSPS), Bell's successor to cord telephone switchboards which controlled call handling and coin collection for local and international calls.

By 2017 all remaining TSPS and ESS installations used to provide telephone service in rural areas of the United States had been removed. Some systems may remain in use Mexico and Colombia, where many U.S. systems were sold and re-installed after being removed from service in the United States.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Magnet</span> Object that has a magnetic field

A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.

<span class="mw-page-title-main">Magnetic-core memory</span> Type of computer memory used from 1955 to 1975

Magnetic-core memory was the predominant form of random-access computer memory for 20 years between about 1955 and 1975. Such memory is often just called core memory, or, informally, core.

<span class="mw-page-title-main">Electromagnet</span> Magnet created with an electric current

An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the hole in the center of the coil. The magnetic field disappears when the current is turned off. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.

<span class="mw-page-title-main">Bubble memory</span> Obsolete type of non-volatile computer memory

Bubble memory is a type of non-volatile computer memory that uses a thin film of a magnetic material to hold small magnetized areas, known as bubbles or domains, each storing one bit of data. The material is arranged to form a series of parallel tracks that the bubbles can move along under the action of an external magnetic field. The bubbles are read by moving them to the edge of the material, where they can be read by a conventional magnetic pickup, and then rewritten on the far edge to keep the memory cycling through the material. In operation, bubble memories are similar to delay-line memory systems.

Magnetoresistive random-access memory (MRAM) is a type of non-volatile random-access memory which stores data in magnetic domains. Developed in the mid-1980s, proponents have argued that magnetoresistive RAM will eventually surpass competing technologies to become a dominant or even universal memory. Currently, memory technologies in use such as flash RAM and DRAM have practical advantages that have so far kept MRAM in a niche role in the market.

<span class="mw-page-title-main">Coercivity</span> Resistance of a ferromagnetic material to demagnetization by an external magnetic field

Coercivity, also called the magnetic coercivity, coercive field or coercive force, is a measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming demagnetized. Coercivity is usually measured in oersted or ampere/meter units and is denoted HC.

The UNIVAC Solid State was a magnetic drum-based solid-state computer announced by Sperry Rand in December 1958 as a response to the IBM 650. It was one of the first computers offered for sale to be (nearly) entirely solid-state, using 700 transistors, and 3000 magnetic amplifiers (FERRACTOR) for primary logic, and 20 vacuum tubes largely for power control. It came in two versions, the Solid State 80 and the Solid State 90. In addition to the "80/90" designation, there were two variants of the Solid State – the SS I 80/90 and the SS II 80/90. The SS II series included two enhancements – the addition of 1,280 words of core memory and support for magnetic tape drives. The SS I had only the standard 5,000-word drum memory described in this article and no tape drives.

<span class="mw-page-title-main">Halbach array</span> Special arrangement of permanent magnets

A Halbach array is a special arrangement of permanent magnets that augments the magnetic field on one side of the array while cancelling the field to near zero on the other side. This is achieved by having a spatially rotating pattern of magnetisation.

<span class="mw-page-title-main">Magnetic storage</span> Recording of data on a magnetizable medium

Magnetic storage or magnetic recording is the storage of data on a magnetized medium. Magnetic storage uses different patterns of magnetisation in a magnetizable material to store data and is a form of non-volatile memory. The information is accessed using one or more read/write heads.

Reading is an action performed by computers, to acquire data from a source and place it into their volatile memory for processing. Computers may read information from a variety of sources, such as magnetic storage, the Internet, or audio and video input ports. Reading is one of the core functions of a Turing machine.

<span class="mw-page-title-main">Flip-disc display</span> Electromechanical equivalent

The flip-disc display is an electromechanical dot matrix display technology used for large outdoor signs, normally those that will be exposed to direct sunlight. Flip-disc technology has been used for destination signs in buses across North America, Europe and Australia, as well as for variable-message signs on highways. It has also been used extensively on public information displays. A few game shows have also used flip-disc displays, including Canadian shows like Just Like Mom, The Joke's on Us and Uh Oh!, but most notably the American game show Family Feud from 1976 to 1995 and its British version Family Fortunes from 1980 to 2002. The Polish version of Family Feud, Familiada, still uses this board, which was bought from the Swedish version of the show. In 2012, Brooklyn-based artist studio, BREAKFAST, began engineering a modernized Flip-Disc technology which was eventually able to flip the discs at over 40 times per second.

The DRTE Computer was a transistorized computer built at the Defence Research Telecommunications Establishment (DRTE), part of the Canadian Defence Research Board. It was one of the earlier fully transistorized machines, running in prototype form in 1957, and fully developed form in 1960. Although the performance was quite good, equal to that of contemporary machines like the PDP-1, no commercial vendors ever took up the design, and the only potential sale to the Canadian Navy's Pacific Naval Laboratories, fell through. The machine is currently part of the Canadian national science and technology collection housed at the Canada Science and Technology Museum.

Plated-wire memory is a variation of magnetic-core memory developed by Bell Laboratories in 1957. Its primary advantage was that it could be assembled by machine, which potentially led to lower prices than magnetic core, which was almost always assembled by hand.

<span class="mw-page-title-main">NCR Century 100</span> 1968 computer system

The NCR Century 100 was NCR's first all integrated circuit computer built in 1968. All logic gates were created by wire-wrapping NAND gates together to form flip-flops and other complex circuits. The console of the system had only 18 lights and switches and allowed entry of a boot routine, or changes to loaded programs or data in memory. A typewriter console was also available.

<span class="mw-page-title-main">Transformer read-only storage</span> Type of read-only memory

Transformer read-only storage (TROS) was a type of read-only memory (ROM) used between the mid-1940s to the late 1960s, prior to the common use of semiconductor ROM. TROS consisted of wires fed through and around transformer cores. The wires would register binary digits through inductance and separate wires sensing the change in current.

<span class="mw-page-title-main">Wiegand effect</span>

The Wiegand effect is a nonlinear magnetic effect, named after its discoverer John R. Wiegand, produced in specially annealed and hardened wire called Wiegand wire.

Magnets exert forces and torques on each other through the interaction of their magnetic fields. The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles that make up the material. Both of these are modeled quite well as tiny loops of current called magnetic dipoles that produce their own magnetic field and are affected by external magnetic fields. The most elementary force between magnets is the magnetic dipole–dipole interaction. If all magnetic dipoles for each magnet are known then the net force on both magnets can be determined by summing all the interactions between the dipoles of the first magnet and the dipoles of the second magnet.

An electropermanent magnet or EPM is a type of permanent magnet in which the external magnetic field can be switched on or off by a pulse of electric current in a wire winding around part of the magnet. The magnet consists of two sections, one of "hard" magnetic material and one of "soft" material. The direction of magnetization in the latter piece can be switched by a pulse of current in a wire winding about the former. When the magnetically soft and hard materials have opposing magnetizations, the magnet produces no net external field across its poles, while when their direction of magnetization is aligned the magnet produces an external magnetic field.

<span class="mw-page-title-main">Vacuum-tube computer</span> Earliest electronic computer design

A vacuum-tube computer, now termed a first-generation computer, is a computer that uses vacuum tubes for logic circuitry. While the history of mechanical aids to computation goes back centuries, if not millennia, the history of vacuum tube computers is confined to the middle of the 20th century. Lee De Forest invented the triode in 1906. The first example of using vacuum tubes for computation, the Atanasoff–Berry computer, was demonstrated in 1939. Vacuum-tube computers were initially one-of-a-kind designs, but commercial models were introduced in the 1950s and sold in volumes ranging from single digits to thousands of units. By the early 1960s vacuum tube computers were obsolete, superseded by second-generation transistorized computers.

Rod memory is one of the many variations on magnetic core memory that attempts to lower costs by automating its manufacturing. It was introduced by NCR in 1964 as part of the NCR 315 RMC computer, RMC for "rod memory computer". It was also used in their Century line.

References

Citations
    Bibliography