Ferroelectric RAM

Last updated
FeRAM by Ramtron Medical Econet PalmCare - CPU module - Ramtron FM18L08-70-SG-5631.jpg
FeRAM by Ramtron
FRAM ferroeelectric capacitor Fram-ferroe-electric-capacitor.png
FRAM ferroeelectric capacitor

Ferroelectric RAM (FeRAM, F-RAM or FRAM) is a random-access memory similar in construction to DRAM but using a ferroelectric layer instead of a dielectric layer to achieve non-volatility. FeRAM is one of a growing number of alternative non-volatile random-access memory technologies that offer the same functionality as flash memory. An FeRAM chip contains a thin film of ferroelectric material, often lead zirconate titanate, commonly referred to as PZT. The atoms in the PZT layer change polarity in an electric field, thereby producing a power-efficient binary switch. However, the most important aspect of the PZT is that it is not affected by power disruption or magnetic interference, making FeRAM a reliable nonvolatile memory. [1]

Contents

FeRAM's advantages over Flash include: lower power usage, faster write speeds [2] and a much greater maximum read/write endurance (about 1010 to 1015 cycles). [3] [4] FeRAMs have data retention times of more than 10 years at +85 °C (up to many decades at lower temperatures). Marked disadvantages of FeRAM are much lower storage densities than flash devices, storage capacity limitations and higher cost. Like DRAM, FeRAM's read process is destructive, necessitating a write-after-read architecture.

History

Ferroelectric RAM was proposed by MIT graduate student Dudley Allen Buck in his master's thesis, Ferroelectrics for Digital Information Storage and Switching, published in 1952. [5]

In 1955, Bell Telephone Laboratories was experimenting with ferroelectric-crystal memories. [6] Following the introduction of metal–oxide–semiconductor (MOS) dynamic random-access memory (DRAM) chips in the early 1970s, [7] development of FeRAM began in the late 1980s. Work was done in 1991 at NASA's Jet Propulsion Laboratory (JPL) on improving methods of read out, including a novel method of non-destructive readout using pulses of UV radiation. [8]

FeRAM was commercialized in the mid-1990s. In 1994, video game company Sega used FeRAM chips to store saved games in Sonic the Hedgehog 3 , which shipped several million game cartridges that year. [9] In 1996, Samsung Electronics introduced a 4  Mb FeRAM chip fabricated using NMOS logic. [10] In 1998, Hyundai Electronics (now SK Hynix) also commercialized FeRAM technology. [11] The earliest known commercial product to use FeRAM is Sony's PlayStation 2 Memory Card (8 MB), released in 2000.[ citation needed ] The Memory Card's microcontroller (MCU) manufactured by Toshiba contained 32  kb (4 kB) embedded FeRAM fabricated using a 500 nm complementary MOS (CMOS) process. [10]

A major modern FeRAM manufacturer is Ramtron, a fabless semiconductor company. One major licensee is Fujitsu, who operates one of the largest semiconductor foundry production lines with FeRAM capability. Since 1999 they have been using this line to produce standalone FeRAMs, as well as specialized chips (e.g. chips for smart cards) with embedded FeRAMs. Fujitsu produced devices for Ramtron until 2010. Since 2010 Ramtron's fabricators have been TI (Texas Instruments) and IBM. Since at least 2001 Texas Instruments has collaborated with Ramtron to develop FeRAM test chips in a modified 130 nm process. In the fall of 2005, Ramtron reported that they were evaluating prototype samples of an 8-megabit FeRAM manufactured using Texas Instruments' FeRAM process. Fujitsu and Seiko-Epson were in 2005 collaborating in the development of a 180 nm FeRAM process. In 2012 Ramtron was acquired by Cypress Semiconductor. [12] FeRAM research projects have also been reported at Samsung, Matsushita, Oki, Toshiba, Infineon, Hynix, Symetrix, Cambridge University, University of Toronto, and the Interuniversity Microelectronics Centre (IMEC, Belgium).

Description

Structure of a FeRAM cell FeRAM cell configuration 1.svg
Structure of a FeRAM cell

Conventional DRAM consists of a grid of small capacitors and their associated wiring and signaling transistors. Each storage element, a cell, consists of one capacitor and one transistor, a so-called "1T-1C" device.

The 1T-1C storage cell design in a FeRAM is similar in construction to the storage cell in DRAM, in that both cell types include one capacitor and one access transistor. In a DRAM cell capacitor, a linear dielectric is used, whereas in a FeRAM cell capacitor the dielectric structure includes ferroelectric material, typically lead zirconate titanate (PZT).

A ferroelectric material has a nonlinear relationship between the applied electric field and the apparently stored charge. Specifically, the ferroelectric characteristic has the form of a hysteresis loop, which is very similar in shape to the hysteresis loop of ferromagnetic materials. The dielectric constant of a ferroelectric is typically much higher than that of a linear dielectric because of the effects of semi-permanent electric dipoles formed in the crystal structure of the ferroelectric material. When an external electric field is applied across a dielectric, the dipoles tend to align themselves with the field direction, produced by small shifts in the positions of atoms and shifts in the distributions of electronic charge in the crystal structure. After the charge is removed, the dipoles retain their polarization state. Binary "0"s and "1"s are stored as one of two possible electric polarizations in each data storage cell. For example, in the figure a "1" is encoded using the negative remnant polarization "-Pr", and a "0" is encoded using the positive remnant polarization "+Pr".

In terms of operation, FeRAM is similar to DRAM. Writing is accomplished by applying a field across the ferroelectric layer by charging the plates on either side of it, forcing the atoms inside into the "up" or "down" orientation (depending on the polarity of the charge), thereby storing a "1" or "0". Reading, however, is somewhat different than in DRAM. The transistor forces the cell into a particular state, say "0". If the cell already held a "0", nothing will happen in the output lines. If the cell held a "1", the re-orientation of the atoms in the film will cause a brief pulse of current in the output as they push electrons out of the metal on the "down" side. The presence of this pulse means the cell held a "1". Since this process overwrites the cell, reading FeRAM is a destructive process, and requires the cell to be re-written.

In general, the operation of FeRAM is similar to ferrite core memory, one of the primary forms of computer memory in the 1960s. However, compared to core memory, FeRAM requires far less power to flip the state of the polarity and does so much faster.

Comparison with other memory types

Density

The main determinant of a memory system's cost is the density of the components used to make it up. Smaller components, and fewer of them, means that more cells can be packed onto a single chip, which in turn means more can be produced at once from a single silicon wafer. This improves yield, which is directly related to cost.

The lower limit to this scaling process is an important point of comparison. In general, the technology that scales to the smallest cell size will end up being the least expensive per bit. In terms of construction, FeRAM and DRAM are similar, and can in general be built on similar lines at similar sizes. In both cases, the lower limit seems to be defined by the amount of charge needed to trigger the sense amplifiers. For DRAM, this appears to be a problem at around 55 nm, at which point the charge stored in the capacitor is too small to be detected. It is not clear whether FeRAM can scale to the same size, as the charge density of the PZT layer may not be the same as the metal plates in a normal capacitor.

An additional limitation on size is that materials tend to stop being ferroelectric when they are too small. [13] [14] (This effect is related to the ferroelectric's "depolarization field".) There is ongoing research on addressing the problem of stabilizing ferroelectric materials; one approach, for example, uses molecular adsorbates. [13]

To date, the commercial FeRAM devices have been produced at 350 nm and 130 nm. Early models required two FeRAM cells per bit, leading to very low densities, but this limitation has since been removed.

Power consumption

The key advantage to FeRAM over DRAM is what happens between the read and write cycles. In DRAM, the charge deposited on the metal plates leaks across the insulating layer and the control transistor, and disappears. In order for a DRAM to store data for anything other than a very short time, every cell must be periodically read and then re-written, a process known as refresh. Each cell must be refreshed many times every second (typically 16 times per second [15] ) and this requires a continuous supply of power.

In contrast, FeRAM only requires power when actually reading or writing a cell. The vast majority of power used in DRAM is used for refresh, so it seems reasonable to suggest that the benchmark quoted by STT-MRAM researchers is useful here too, indicating power usage about 99% lower than DRAM. The destructive read aspect of FeRAM may put it at a disadvantage compared to MRAM, however.

Another non-volatile memory type is flash, and like FeRAM it does not require a refresh process. Flash works by pushing electrons across a high-quality insulating barrier where they get "stuck" on one terminal of a transistor. This process requires high voltages, which are built up in a charge pump over time. This means that FeRAM could be expected to be lower power than flash, at least for writing, as the write power in FeRAM is only marginally higher than reading. For a "mostly-read" device the difference might be slight, but for devices with more balanced read and write the difference could be expected to be much higher.

Reliability

FRAM-in-magnetic-field.png

Data reliability is guaranteed in F-RAM even in a high magnetic field environment compared to MRAM. Cypress Semiconductor's [16] F-RAM devices are immune to the strong magnetic fields and do not show any failures under the maximum available magnetic field strengths (3,700 Gauss for horizontal insertion and 2,000 Gauss for vertical insertion). In addition, the F-RAM devices allow rewriting with a different data pattern after exposure to the magnetic fields.

Speed

DRAM speed is limited by the rate at which the charge stored in the cells can be drained (for reading) or stored (for writing). In general, this ends up being defined by the capability of the control transistors, the capacitance of the lines carrying power to the cells, and the heat that power generates.

FeRAM is based on the physical movement of atoms in response to an external field, which is extremely fast, averaging about 1 ns. In theory, this means that FeRAM could be much faster than DRAM. However, since power has to flow into the cell for reading and writing, the electrical and switching delays would likely be similar to DRAM overall. It does seem reasonable to suggest that FeRAM would require less charge than DRAM, because DRAMs need to hold the charge, whereas FeRAM would have been written to before the charge would have drained. However, there is a delay in writing because the charge has to flow through the control transistor, which limits current somewhat.

In comparison to flash, the advantages are much more obvious. Whereas the read operation is likely to be similar in speed, the charge pump used for writing requires a considerable time to "build up" current, a process that FeRAM does not need. Flash memories commonly need a millisecond or more to complete a write, whereas current FeRAMs may complete a write in less than 150 ns.

On the other hand, FeRAM has its own reliability issues, including imprint and fatigue. Imprint is the preferential polarization state from previous writes to that state, and fatigue is the increase of minimum writing voltage due to loss of polarization after extensive cycling.

The theoretical speed of FeRAM is not entirely clear. Existing 350 nm devices have read times on the order of 50–60 ns. Although slow compared to modern DRAMs, which can be found with times on the order of 2 ns, common 350 nm DRAMs operated with a read time of about 35 ns, [17] so FeRAM speed appears to be comparable given the same fabrication technology.

Additional Metrics

Ferroelectric RAM Magnetoresistive random-access memory nvSRAMBBSRAM
TechniqueThe basic storage element is a ferroelectric capacitor. The capacitor can be polarized up or down by applying an electric field [18] Similar to ferroelectric RAM, but the atoms align themselves in the direction of an external magnetic force. This effect is used to store dataHas non-volatile elements along with high speed SRAM Has a lithium energy source for power when external power is off
Data retention [19] 10-160 yrs [20] [4] 20 yrs20 yrs 7 yrs, dependent on battery and ambient temperature
Endurance1010 to 1015 [4] [21] 108 [22] UnlimitedLimited
Speed (best)55 ns35 ns15–45 ns 70–100 ns

Applications

Market

FeRAM remains a relatively small part of the overall semiconductor market. In 2005, worldwide semiconductor sales were US$235 billion (according to the Gartner Group), with the flash memory market accounting for US$18.6 billion (according to IC Insights).[ citation needed ] The 2005 annual sales of Ramtron, perhaps the largest FeRAM vendor, were reported to be US$32.7 million. The much larger sales of flash memory compared to the alternative NVRAMs support a much larger research and development effort. Flash memory is produced using semiconductor linewidths of 30 nm at Samsung (2007) while FeRAMs are produced in linewidths of 350 nm at Fujitsu and 130 nm at Texas Instruments (2007). Flash memory cells can store multiple bits per cell (currently 4 in the highest density NAND flash devices), and the number of bits per flash cell is projected to increase to 8 as a result of innovations in flash cell design. As a consequence, the areal bit densities of flash memory are much higher than those of FeRAM, and thus the cost per bit of flash memory is orders of magnitude lower than that of FeRAM.

The density of FeRAM arrays might be increased by improvements in FeRAM foundry process technology and cell structures, such as the development of vertical capacitor structures (in the same way as DRAM) to reduce the area of the cell footprint. However, reducing the cell size may cause the data signal to become too weak to be detectable. In 2005, Ramtron reported significant sales of its FeRAM products in a variety of sectors including (but not limited to) electricity meters, [24] automotive (e.g. black boxes, smart air bags), business machines (e.g. printers, RAID disk controllers), instrumentation, medical equipment, industrial microcontrollers, and radio frequency identification tags. The other emerging NVRAMs, such as MRAM, may seek to enter similar niche markets in competition with FeRAM.

Texas Instruments proved it to be possible to embed FeRAM cells using two additional masking steps[ citation needed ] during conventional CMOS semiconductor manufacture. Flash typically requires nine masks. This makes possible for example, the integration of FeRAM onto microcontrollers, where a simplified process would reduce costs. However, the materials used to make FeRAMs are not commonly used in CMOS integrated circuit manufacturing. Both the PZT ferroelectric layer and the noble metals used for electrodes raise CMOS process compatibility and contamination issues. Texas Instruments has incorporated an amount of FRAM memory into its MSP430 microcontrollers in its new FRAM series. [25]

Capacity timeline

As of 2021 different vendors were selling chips with no more than 16Mb of memory in storage size (density). [26]

See also

Related Research Articles

<span class="mw-page-title-main">Computer memory</span> Computer component that stores information for immediate use

Computer memory stores information, such as data and programs, for immediate use in the computer. The term memory is often synonymous with the term primary storage or main memory. An archaic synonym for memory is store.

<span class="mw-page-title-main">Static random-access memory</span> Type of computer memory

Static random-access memory is a type of random-access memory (RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is volatile memory; data is lost when power is removed.

<span class="mw-page-title-main">Dynamic random-access memory</span> Type of computer memory

Dynamic random-access memory is a type of random-access semiconductor memory that stores each bit of data in a memory cell, usually consisting of a tiny capacitor and a transistor, both typically based on metal–oxide–semiconductor (MOS) technology. While most DRAM memory cell designs use a capacitor and transistor, some only use two transistors. In the designs where a capacitor is used, the capacitor can either be charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. The electric charge on the capacitors gradually leaks away; without intervention the data on the capacitor would soon be lost. To prevent this, DRAM requires an external memory refresh circuit which periodically rewrites the data in the capacitors, restoring them to their original charge. This refresh process is the defining characteristic of dynamic random-access memory, in contrast to static random-access memory (SRAM) which does not require data to be refreshed. Unlike flash memory, DRAM is volatile memory, since it loses its data quickly when power is removed. However, DRAM does exhibit limited data remanence.

Non-volatile random-access memory (NVRAM) is random-access memory that retains data without applied power. This is in contrast to dynamic random-access memory (DRAM) and static random-access memory (SRAM), which both maintain data only for as long as power is applied, or forms of sequential-access memory such as magnetic tape, which cannot be randomly accessed but which retains data indefinitely without electric power.

Magnetoresistive random-access memory (MRAM) is a type of non-volatile random-access memory which stores data in magnetic domains. Developed in the mid-1980s, proponents have argued that magnetoresistive RAM will eventually surpass competing technologies to become a dominant or even universal memory. Currently, memory technologies in use such as flash RAM and DRAM have practical advantages that have so far kept MRAM in a niche role in the market.

Non-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retain stored information even after power is removed. In contrast, volatile memory needs constant power in order to retain data.

Nano-RAM is a proprietary computer memory technology from the company Nantero. It is a type of nonvolatile random-access memory based on the position of carbon nanotubes deposited on a chip-like substrate. In theory, the small size of the nanotubes allows for very high density memories. Nantero also refers to it as NRAM.

Phase-change memory is a type of non-volatile random-access memory. PRAMs exploit the unique behaviour of chalcogenide glass. In PCM, heat produced by the passage of an electric current through a heating element generally made of titanium nitride is used to either quickly heat and quench the glass, making it amorphous, or to hold it in its crystallization temperature range for some time, thereby switching it to a crystalline state. PCM also has the ability to achieve a number of distinct intermediary states, thereby having the ability to hold multiple bits in a single cell, but the difficulties in programming cells in this way has prevented these capabilities from being implemented in other technologies with the same capability.

Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a silicon integrated circuit memory chip. There are numerous different types using different semiconductor technologies. The two main types of random-access memory (RAM) are static RAM (SRAM), which uses several transistors per memory cell, and dynamic RAM (DRAM), which uses a transistor and a MOS capacitor per cell. Non-volatile memory uses floating-gate memory cells, which consist of a single floating-gate transistor per cell.

Memory refresh is the process, for the purpose of preserving the information, of periodically reading information from an area of computer memory and immediately rewriting the read information to the same area without modification. Memory refresh is a background maintenance process required during the operation of semiconductor dynamic random-access memory (DRAM), the most widely used type of computer memory, and in fact is the defining characteristic of this class of memory.

The transistor count is the number of transistors in an electronic device. It is the most common measure of integrated circuit complexity. The rate at which MOS transistor counts have increased generally follows Moore's law, which observes that transistor count doubles approximately every two years. However, being directly proportional to the area of a chip, transistor count does not represent how advanced the corresponding manufacturing technology is: a better indication of this is transistor density.

<span class="mw-page-title-main">Spin-transfer torque</span> Physical magnetic effect

Spin-transfer torque (STT) is an effect in which the orientation of a magnetic layer in a magnetic tunnel junction or spin valve can be modified using a spin-polarized current.

Charge trap flash (CTF) is a semiconductor memory technology used in creating non-volatile NOR and NAND flash memory. It is a type of floating-gate MOSFET memory technology, but differs from the conventional floating-gate technology in that it uses a silicon nitride film to store electrons rather than the doped polycrystalline silicon typical of a floating-gate structure. This approach allows memory manufacturers to reduce manufacturing costs five ways:

  1. Fewer process steps are required to form a charge storage node
  2. Smaller process geometries can be used
  3. Multiple bits can be stored on a single flash memory cell
  4. Improved reliability
  5. Higher yield since the charge trap is less susceptible to point defects in the tunnel oxide layer

SONOS, short for "silicon–oxide–nitride–oxide–silicon", more precisely, "polycrystalline silicon"—"silicon dioxide"—"silicon nitride"—"silicon dioxide"—"silicon", is a cross sectional structure of MOSFET (metal–oxide–semiconductor field-effect transistor), realized by P.C.Y. Chen of Fairchild Camera and Instrument in 1977. This structure is often used for non-volatile memories, such as EEPROM and flash memories. It is sometimes used for TFT LCD displays. It is one of CTF (charge trap flash) variants. It is distinguished from traditional non-volatile memory structures by the use of silicon nitride (Si3N4 or Si9N10) instead of "polysilicon-based FG (floating-gate)" for the charge storage material. A further variant is "SHINOS" ("silicon"—"hi-k"—"nitride"—"oxide"—"silicon"), which is substituted top oxide layer with high-κ material. Another advanced variant is "MONOS" ("metal–oxide–nitride–oxide–silicon"). Companies offering SONOS-based products include Cypress Semiconductor, Macronix, Toshiba, United Microelectronics Corporation and Floadia.

nvSRAM is a type of non-volatile random-access memory (NVRAM). nvSRAM extends the functionality of basic SRAM by adding non-volatile storage such as an EEPROM to the SRAM chip. In operation, data is written to and read from the SRAM portion with high-speed access; the data in SRAM can then be stored into or retrieved from the non-volatile storage at lower speeds when needed.

<span class="mw-page-title-main">Read-only memory</span> Electronic memory that cannot be changed

Read-only memory (ROM) is a type of non-volatile memory used in computers and other electronic devices. Data stored in ROM cannot be electronically modified after the manufacture of the memory device. Read-only memory is useful for storing software that is rarely changed during the life of the system, also known as firmware. Software applications for programmable devices can be distributed as plug-in cartridges containing ROM.

<span class="mw-page-title-main">Random-access memory</span> Form of computer data storage

Random-access memory is a form of electronic computer memory that can be read and changed in any order, typically used to store working data and machine code. A random-access memory device allows data items to be read or written in almost the same amount of time irrespective of the physical location of data inside the memory, in contrast with other direct-access data storage media, where the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement.

Everspin Technologies is a public semiconductor company headquartered in Chandler, Arizona, United States. It develops and manufactures discrete magnetoresistive RAM or magnetoresistive random-access memory (MRAM) products, including Toggle MRAM and Spin-Transfer Torque MRAM (STT-MRAM) product families. It also licenses its technology for use in embedded MRAM (eMRAM) applications, magnetic sensor applications as well as performs backend foundry services for eMRAM.

<span class="mw-page-title-main">Memory cell (computing)</span> Part of computer memory

The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 and reset to store a logic 0. Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it.

A ferroelectric field-effect transistor is a type of field-effect transistor that includes a ferroelectric material sandwiched between the gate electrode and source-drain conduction region of the device. Permanent electrical field polarisation in the ferroelectric causes this type of device to retain the transistor's state in the absence of any electrical bias.

References

  1. "FRAM technology". Cypress semiconductos.
  2. "FeTRAM: memória não-volátil consome 99% menos energia". 29 September 2011.
  3. https://www.fujitsu.com/us/Images/MB85R4001A-DS501-00005-3v0-E.pdf [ bare URL PDF ]
  4. 1 2 3 "CY15B116QI Data Sheet". Cypress Semiconductors. p. 19.
  5. Dudley A. Buck, "Ferroelectrics for Digital Information Storage and Switching." Report R-212, MIT, June 1952.
  6. Ridenour, Louis N. (June 1955). "Computer Memories". Scientific American : 92. Archived from the original on 2016-08-22. Retrieved 2016-08-22.
  7. "1970: Semiconductors compete with magnetic cores". Computer History Museum . Retrieved 19 June 2019.
  8. Optically Addressed Ferroelectric Memory with Non-Destructive Read-Out Archived 2009-04-14 at the Wayback Machine
  9. "EDN, Volume 39, Issues 5-8". EDN . Vol. 39, no. 5–8. 1994. p. 14. In the highest-volume usage yet for nonvolatile ferroelectric RAMs (FRAMs), video-game maker Sega has shipped several million copies of its new game, "Sonic the Hedgehog III," which incorporates FRAMS from Ramtron International Corp to save a game between sessions.
  10. 1 2 Scott, J.F. (2003). "Nano-Ferroelectrics". In Tsakalakos, Thomas; Ovid'ko, Ilya A.; Vasudevan, Asuri K. (eds.). Nanostructures: Synthesis, Functional Properties and Application. Springer Science & Business Media. pp. 583-600 (584-5, 597). ISBN   9789400710191.
  11. "History: 1990s". SK Hynix . Archived from the original on 5 February 2021. Retrieved 6 July 2019.
  12. "Cypress Semiconductor completes Ramtron acquisition – Denver Business Journal". Archived from the original on 2012-11-30.
  13. 1 2 Ferroelectric Phase Transition in Individual Single-Crystalline BaTiO3 Nanowires Archived 2010-06-15 at the Wayback Machine . See also the associated press release.
  14. Junquera and Ghosez, Nature, 2003, DOI 10.1038/nature01501
  15. "TN-47-16: Designing for High-Density DDR2 Memory" (PDF). Archived from the original (PDF) on September 20, 2006.
  16. "FRAM - Magnetic field Immunity". Cypress Semiconductors.
  17. Lee, Dong-Jae; Seok, Yong-Sik; Choi, Do-Chan; Lee, Jae-Hyeong; Kim, Young-Rae; Kim, Hyeun-Su; Jun, Dong-Soo; Kwon, Oh-Hyun (1 June 1992). "A 35 ns 64 Mb DRAM using on-chip boosted power supply". 1992 Symposium on VLSI Circuits Digest of Technical Papers. pp. 64–65. doi:10.1109/VLSIC.1992.229238. ISBN   978-0-7803-0701-8. S2CID   62372447 via IEEE Xplore.
  18. "FRAM technology brief". Cypress Semiconductors.
  19. https://site.ieee.org/pikespeak/files/2020/06/Non-Volatile-RAM-Review-ECEN-5823.pdf [ bare URL PDF ]
  20. "FRAM Data sheets". Cypress Semiconductors.
  21. "FRAM". Cypress Semiconductors.
  22. "StackPath".
  23. "Energy comparison between FRAM and EEPROM". Cypress Semiconductors.
  24. "User Manual: Single phase, single rate, Credit Meter". Ampy Automation Ltd. The FRAM is guaranteed for a minimum of 10,000,000,000 write cycles.
  25. "FRAM – Ultra-Low-Power Embedded Memory". Texas Instruments.
  26. AG, Infineon Technologies. "F-RAM (Ferroelectric RAM) - Infineon Technologies". www.infineon.com. Retrieved 2021-12-18.
IC Chips