Technological evolution

Last updated

The term "technological evolution" captures explanations of technological change that draw on mechanisms from evolutionary biology. Evolutionary biology was originally described in On the Origin of Species by Charles Darwin. In the style of this catchphrase, technological evolution can be used to describe the origin of new technologies.

Contents

Combinatoric theory of technological change

The combinatoric theory of technological change states that every technology always consists of simpler technologies, and a new technology is made of already existing technologies. One notion of this theory is that this interaction of technologies creates a network. All the technologies which interact to form a new technology can be thought of as complements, such as a screwdriver and a screw which by their interaction create the process of screwing a screw. [1] This newly formed process of screwing a screw can be perceived as a technology itself and can therefore be represented by a new node in the network of technologies. The new technology itself can interact with other technologies to form a new technology again. As the process of combining existing technologies is repeated again and again, the network of technologies grows.

A described mechanism of technological change has been termed, “combinatorial evolution”. [2] Others have called it, “technological recursion”. [3]

Brian Arthur has elaborated how the theory is related to the mechanism of genetic recombination from evolutionary biology and in which aspects it differs. [4]

History of technological evolution

Technological evolution is a theory of radical transformation of society through technological development. This theory originated with Czech philosopher Radovan Richta. [5]

Mankind In Transition; A View of the Distant Past, the Present and the Far Future, Masefield Books, 1993. [6] Technology (which Richta defines as "a material entity created by the application of mental and physical effort to nature in order to achieve some value") evolves in three stages: tools, machine, automation. This evolution, he says, follows two trends:

The pre-technological period, in which other animal species remain today (aside from some avian and primate species) was a non-rational period of the early prehistoric man.

The emergence of technology, made possible by the development of the rational faculty, paved the way for the first stage: the tool. A tool provides a mechanical advantage in accomplishing a physical task, such as an arrow, plow, or hammer that augments physical labor to more efficiently achieve his objective. Later animal-powered tools such as the plow and the horse, increased the productivity of food production about tenfold over the technology of the hunter-gatherers. Tools allow one to do things impossible to accomplish with one's body alone, such as seeing minute visual detail with a microscope, manipulating heavy objects with a pulley and cart, or carrying volumes of water in a bucket.

The second technological stage was the creation of the machine. A machine (a powered machine to be more precise) is a tool that substitutes part of or all of the element of human physical effort, requiring only the control of its functions. Machines became widespread with the industrial revolution, though windmills, a type of machine, are much older.

Examples of this include cars, trains, computers, and lights. Machines allow humans to tremendously exceed the limitations of their bodies. Putting a machine on the farm, a tractor, increased food productivity at least tenfold over the technology of the plow and the horse.

The third, and final stage of technological evolution is the automation. The automation is a machine that removes the element of human control with an automatic algorithm. Examples of machines that exhibit this characteristic are digital watches, automatic telephone switches, pacemakers, and computer programs.

Each of these three stages outline the introduction and development of the fundamental types of technology, and all three continue to be widely used today. A spear, a plow, a pen, a knife, a glove, and an optical microscope are all examples of tools.

See also

Related Research Articles

<span class="mw-page-title-main">Natural selection</span> Mechanism of evolution by differential survival and reproduction of individuals

Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the heritable traits characteristic of a population over generations. Charles Darwin popularised the term "natural selection", contrasting it with artificial selection, which is intentional, whereas natural selection is not.

<span class="mw-page-title-main">Machine</span> Powered mechanical device

A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines. Machines can be driven by animals and people, by natural forces such as wind and water, and by chemical, thermal, or electrical power, and include a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement. They can also include computers and sensors that monitor performance and plan movement, often called mechanical systems.

<span class="mw-page-title-main">Automation</span> Use of various control systems for operating equipment

Automation describes a wide range of technologies that reduce human intervention in processes, mainly by predetermining decision criteria, subprocess relationships, and related actions, as well as embodying those predeterminations in machines. Automation has been achieved by various means including mechanical, hydraulic, pneumatic, electrical, electronic devices, and computers, usually in combination. Complicated systems, such as modern factories, airplanes, and ships typically use combinations of all of these techniques. The benefit of automation includes labor savings, reducing waste, savings in electricity costs, savings in material costs, and improvements to quality, accuracy, and precision.

<span class="mw-page-title-main">History of biology</span>

The history of biology traces the study of the living world from ancient to modern times. Although the concept of biology as a single coherent field arose in the 19th century, the biological sciences emerged from traditions of medicine and natural history reaching back to Ayurveda, ancient Egyptian medicine and the works of Aristotle, Theophrastus and Galen in the ancient Greco-Roman world. This ancient work was further developed in the Middle Ages by Muslim physicians and scholars such as Avicenna. During the European Renaissance and early modern period, biological thought was revolutionized in Europe by a renewed interest in empiricism and the discovery of many novel organisms. Prominent in this movement were Vesalius and Harvey, who used experimentation and careful observation in physiology, and naturalists such as Linnaeus and Buffon who began to classify the diversity of life and the fossil record, as well as the development and behavior of organisms. Antonie van Leeuwenhoek revealed by means of microscopy the previously unknown world of microorganisms, laying the groundwork for cell theory. The growing importance of natural theology, partly a response to the rise of mechanical philosophy, encouraged the growth of natural history.

<span class="mw-page-title-main">Evolutionary biology</span> Study of the processes that produced the diversity of life

Evolutionary biology is the subfield of biology that studies the evolutionary processes that produced the diversity of life on Earth. It is also defined as the study of the history of life forms on Earth. Evolution holds that all species are related and gradually change over generations. In a population, the genetic variations affect the phenotypes of an organism. These changes in the phenotypes will be an advantage to some organisms, which will then be passed on to their offspring. Some examples of evolution in species over many generations are the peppered moth and flightless birds. In the 1930s, the discipline of evolutionary biology emerged through what Julian Huxley called the modern synthesis of understanding, from previously unrelated fields of biological research, such as genetics and ecology, systematics, and paleontology.

<span class="mw-page-title-main">Radovan Richta</span> Czech philosopher (1924–1983)

Radovan Richta was a Czech philosopher who coined the term technological evolution; a theory about how societies diminish physical labour by increasing mental labour.

Sociocultural evolution, sociocultural evolutionism or social evolution are theories of sociobiology and cultural evolution that describe how societies and culture change over time. Whereas sociocultural development traces processes that tend to increase the complexity of a society or culture, sociocultural evolution also considers process that can lead to decreases in complexity (degeneration) or that can produce variation or proliferation without any seemingly significant changes in complexity (cladogenesis). Sociocultural evolution is "the process by which structural reorganization is affected through time, eventually producing a form or structure that is qualitatively different from the ancestral form".

Devolution, de-evolution, or backward evolution is the notion that species can revert to supposedly more primitive forms over time. The concept relates to the idea that evolution has a divine purpose (teleology) and is thus progressive (orthogenesis), for example that feet might be better than hooves, or lungs than gills. However, evolutionary biology makes no such assumptions, and natural selection shapes adaptations with no foreknowledge or foresights of any kind regarding the outcome. It is possible for small changes to be reversed by chance or selection, but this is no different from the normal course of evolution and as such de-evolution is not compatible with a proper understanding of evolution due to natural selection.

Cultural selection theory is the study of cultural change modelled on theories of evolutionary biology. Cultural selection theory has so far never been a separate discipline. However it has been proposed that human culture exhibits key Darwinian evolutionary properties, and "the structure of a science of cultural evolution should share fundamental features with the structure of the science of biological evolution". In addition to Darwin's work the term historically covers a diverse range of theories from both the sciences and the humanities including those of Lamark, politics and economics e.g. Bagehot, anthropology e.g. Edward B. Tylor, literature e.g. Ferdinand Brunetière, evolutionary ethics e.g. Leslie Stephen, sociology e.g. Albert Keller, anthropology e.g. Bronislaw Malinowski, Biosciences e.g. Alex Mesoudi, geography e.g. Richard Ormrod, sociobiology and biodiversity e.g. E.O. Wilson, computer programming e.g. Richard Brodie, and other fields e.g. Neoevolutionism, and Evolutionary archaeology.

<span class="mw-page-title-main">Structuralism (biology)</span> Attempt to explain evolution by forces other than natural selection

Biological or process structuralism is a school of biological thought that objects to an exclusively Darwinian or adaptationist explanation of natural selection such as is described in the 20th century's modern synthesis. It proposes instead that evolution is guided differently, basically by more or less physical forces which shape the development of an animal's body, and sometimes implies that these forces supersede selection altogether.

The following outline is provided as an overview of and topical guide to automation:

Many scientists and philosophers of science have described evolution as fact and theory, a phrase which was used as the title of an article by paleontologist Stephen Jay Gould in 1981. He describes fact in science as meaning data, not known with absolute certainty but "confirmed to such a degree that it would be perverse to withhold provisional assent". A scientific theory is a well-substantiated explanation of such facts. The facts of evolution come from observational evidence of current processes, from imperfections in organisms recording historical common descent, and from transitions in the fossil record. Theories of evolution provide a provisional explanation for these facts.

Universal Darwinism, also known as generalized Darwinism, universal selection theory, or Darwinian metaphysics, is a variety of approaches that extend the theory of Darwinism beyond its original domain of biological evolution on Earth. Universal Darwinism aims to formulate a generalized version of the mechanisms of variation, selection and heredity proposed by Charles Darwin, so that they can apply to explain evolution in a wide variety of other domains, including psychology, linguistics, economics, culture, medicine, computer science, and physics.

<span class="mw-page-title-main">Productivity-improving technologies</span> Technological innovations that have historically increased productivity

The productivity-improving technologies are the technological innovations that have historically increased productivity.

This article considers the history of zoology since the theory of evolution by natural selection proposed by Charles Darwin in 1859.

<span class="mw-page-title-main">Roberta Millstein</span> Professor of Philosophy

Roberta L. Millstein is Professor of Philosophy at the University of California, Davis, with affiliations in the Science and Technology Studies Program and the John Muir Institute for the Environment. She is the Senior Co-chair of the Philosophy of Science Association’s Women's Caucus and an Editor of the peer-reviewed online open-access journal Philosophy, Theory, and Practice in Biology. She also serves as a member of the executive committee and Council for the American Association for the Advancement of Science, Pacific Division (AAAS-PD) as well as the council for the International Society for the History, Philosophy, and Social Studies of Biology (ISHPSSB).

Robotic process automation (RPA) is a form of business process automation that is based on software robots (bots) or artificial intelligence (AI) agents. RPA should not be confused with artificial intelligence as it is based on automotive technology following a predefined workflow. It is sometimes referred to as software robotics.

Cultural evolution is an evolutionary theory of social change. It follows from the definition of culture as "information capable of affecting individuals' behavior that they acquire from other members of their species through teaching, imitation and other forms of social transmission". Cultural evolution is the change of this information over time.

<span class="mw-page-title-main">Alternatives to Darwinian evolution</span> List of alternatives to Darwinian natural selection

Alternatives to Darwinian evolution have been proposed by scholars investigating biology to explain signs of evolution and the relatedness of different groups of living things. The alternatives in question do not deny that evolutionary changes over time are the origin of the diversity of life, nor that the organisms alive today share a common ancestor from the distant past ; rather, they propose alternative mechanisms of evolutionary change over time, arguing against mutations acted on by natural selection as the most important driver of evolutionary change.

<span class="mw-page-title-main">Evolution in fiction</span> Evolution as a theme in fiction

Evolution has been an important theme in fiction, including speculative evolution in science fiction, since the late 19th century, though it began before Charles Darwin's time, and reflects progressionist and Lamarckist views as well as Darwin's. Darwinian evolution is pervasive in literature, whether taken optimistically in terms of how humanity may evolve towards perfection, or pessimistically in terms of the dire consequences of the interaction of human nature and the struggle for survival. Other themes include the replacement of humanity, either by other species or by intelligent machines.

References

  1. Kauffman, Stuart (2019). "Innovation and The Evolution of the Economic Web". Entropy. 21 (9): 864. Bibcode:2019Entrp..21..864K. doi: 10.3390/e21090864 . PMC   7515393 .
  2. Arthur, W. Brian. "Darwinism theory of evolution applied to technology". ComputerWeekly.com. Retrieved 18 August 2021.
  3. Fink, Thomas M. A.; Teimouri, Ali (2019). "The mathematical structure of innovation": 1. arXiv: 1912.03281 .{{cite journal}}: Cite journal requires |journal= (help)
  4. Arthur, W. Brian. "Darwinism theory of evolution applied to technology". ComputerWeekly.com. Retrieved 18 August 2021.
  5. Böhme, Gernot; Stehr, Nico (2012). The Knowledge Society: The Growing Impact of Scientific Knowledge on Social Relations. Springer Science & Business Media. ISBN   9789400947245 . Retrieved 27 March 2017.
  6. Bloomfield, Masse (1993). The Automated Society; A View of the Distant Past, the Present and the Far Future. Masefield Books. ISBN   1879981025 . Retrieved 29 March 2017.

The Evolution of Technology, George Basalla, University of Delaware