Fe FET

Last updated

A ferroelectric field-effect transistor (Fe FET) is a type of field-effect transistor that includes a ferroelectric material sandwiched between the gate electrode and source-drain conduction region of the device (the channel). Permanent electrical field polarisation in the ferroelectric causes this type of device to retain the transistor's state (on or off) in the absence of any electrical bias.

Contents

FeFET based devices are used in FeFET memory - a type of single transistor non-volatile memory.

Description

In 1955, Ian Munro Ross filed a patent for a FeFET or MFSFET. Its structure was like that of a modern inversion channel MOSFET, but ferroelectric material was used as a dielectric/insulator instead of oxide. [1] Use of a ferroelectric (triglycine sulfate) in a solid state memory was proposed by Moll and Tarui in 1963 using a thin film transistor. [2] Further research occurred in the 1960s, but the retention characteristics of the thin film based devices was unsatisfactory. [3] Early field effect transistor based devices used bismuth titanate (Bi4Ti3O12) ferroelectric, or Pb1−xLnxTiO3 (PLT) and related mixed zirconate/titanates (PLZT). [3] In the late 1980 Ferroelectric RAM was developed, using a ferroelectric thin film as capacitor, connected to an addressing FET. [3]

FeFET based memory devices are read using voltages below the coercive voltage for the ferroelectric. [4]

Issues involved in realising a practical FeFET memory device include (as of 2006) : choice of a high permitivity, highly insulating layer between ferroelectric and gate; issues with high remanent polarisation of ferroelectrics; limited retention time (c. a few days, cf required 10 years). [5]

Provided the ferroelectric layer can be scaled accordingly FeFET based memory devices are expected to scale (shrink) as well as MOSFET devices; however a limit of ~20 nm laterally may exist [6] (the superparaelectric limit, aka ferroelectric limit). Other challenges to feature shrinks include : reduced film thickness causing additional (undesired) polarisation effects; charge injection; and leakage currents. [5]

Research and development

Structure of a 1 Transistor FeRAM cell 1T FeRAM cell structure.svg
Structure of a 1 Transistor FeRAM cell

In 2017 FeFET based non-volatile memory was reported as having been built at 22nm node using FDSOI CMOS (fully depleted silicon on insulator) with hafnium dioxide (HfO2) as the ferroelectric- the smallest FeFET cell size reported was 0.025 μm2, the devices were built as 32Mbit arrays, using set/reset pulses of ~10ns duration at 4.2V - the devices showed endurance of 105 cycles and data retention up to 300C. [7]

As of 2017 the startup Ferroelectric Memory Company is attempting to develop FeFET memory into a commercial device, based on hafnium dioxide. The company's technology is claimed to scale to modern process node sizes, and to integrate with contemporary production processes, i.e. HKMG, and is easily integrable into conventional CMOS processes, requiring only two additional masks. [8]

See also

Related Research Articles

<span class="mw-page-title-main">MOSFET</span> Type of field-effect transistor

In electronics, the metal–oxide–semiconductor field-effect transistor is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. The term metal–insulator–semiconductor field-effect transistor (MISFET) is almost synonymous with MOSFET. Another near-synonym is insulated-gate field-effect transistor (IGFET).

Non-volatile random-access memory (NVRAM) is random-access memory that retains data without applied power. This is in contrast to dynamic random-access memory (DRAM) and static random-access memory (SRAM), which both maintain data only for as long as power is applied, or forms of sequential-access memory such as magnetic tape, which cannot be randomly accessed but which retains data indefinitely without electric power.

In semiconductor manufacturing, silicon on insulator (SOI) technology is fabrication of silicon semiconductor devices in a layered silicon–insulator–silicon substrate, to reduce parasitic capacitance within the device, thereby improving performance. SOI-based devices differ from conventional silicon-built devices in that the silicon junction is above an electrical insulator, typically silicon dioxide or sapphire. The choice of insulator depends largely on intended application, with sapphire being used for high-performance radio frequency (RF) and radiation-sensitive applications, and silicon dioxide for diminished short-channel effects in other microelectronics devices. The insulating layer and topmost silicon layer also vary widely with application.

Non-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retain stored information even after power is removed. In contrast, volatile memory needs constant power in order to retain data.

<span class="mw-page-title-main">Threshold voltage</span> Minimum source-to-gate voltage for a field effect transistor to be conducting from source to drain

The threshold voltage, commonly abbreviated as Vth or VGS(th), of a field-effect transistor (FET) is the minimum gate-to-source voltage (VGS) that is needed to create a conducting path between the source and drain terminals. It is an important scaling factor to maintain power efficiency.

<span class="mw-page-title-main">Fin field-effect transistor</span> Type of non-planar transistor

A fin field-effect transistor (FinFET) is a multigate device, a MOSFET built on a substrate where the gate is placed on two, three, or four sides of the channel or wrapped around the channel, forming a double or even multi gate structure. These devices have been given the generic name "FinFETs" because the source/drain region forms fins on the silicon surface. The FinFET devices have significantly faster switching times and higher current density than planar CMOS technology.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance. Discrete circuits are made of individual electronic components that only perform one function each as packaged, which are known as discrete components, although strictly the term discrete component refers to such a component with semiconductor material such as individual transistors.

<span class="mw-page-title-main">Ferroelectric RAM</span> Novel type of computer memory

Ferroelectric RAM is a random-access memory similar in construction to DRAM but using a ferroelectric layer instead of a dielectric layer to achieve non-volatility. FeRAM is one of a growing number of alternative non-volatile random-access memory technologies that offer the same functionality as flash memory. An FeRAM chip contains a thin film of ferroelectric material, often lead zirconate titanate, commonly referred to as PZT. The atoms in the PZT layer change polarity in an electric field, thereby producing a power-efficient binary switch. However, the most important aspect of the PZT is that it is not affected by power disruption or magnetic interference, making FeRAM a reliable nonvolatile memory.

In the semiconductor industry, the term high-κ dielectric refers to a material with a high dielectric constant, as compared to silicon dioxide. High-κ dielectrics are used in semiconductor manufacturing processes where they are usually used to replace a silicon dioxide gate dielectric or another dielectric layer of a device. The implementation of high-κ gate dielectrics is one of several strategies developed to allow further miniaturization of microelectronic components, colloquially referred to as extending Moore's Law.

<span class="mw-page-title-main">Hafnium(IV) oxide</span> Chemical compound

Hafnium(IV) oxide is the inorganic compound with the formula HfO
2
. Also known as hafnium dioxide or hafnia, this colourless solid is one of the most common and stable compounds of hafnium. It is an electrical insulator with a band gap of 5.3~5.7 eV. Hafnium dioxide is an intermediate in some processes that give hafnium metal.

The floating-gate MOSFET (FGMOS), also known as a floating-gate MOS transistor or floating-gate transistor, is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) where the gate is electrically isolated, creating a floating node in direct current, and a number of secondary gates or inputs are deposited above the floating gate (FG) and are electrically isolated from it. These inputs are only capacitively connected to the FG. Since the FG is surrounded by highly resistive material, the charge contained in it remains unchanged for long periods of time, typically longer than 10 years in modern devices. Usually Fowler-Nordheim tunneling or hot-carrier injection mechanisms are used to modify the amount of charge stored in the FG.

SONOS, short for "silicon–oxide–nitride–oxide–silicon", more precisely, "polycrystalline silicon"—"silicon dioxide"—"silicon nitride"—"silicon dioxide"—"silicon", is a cross sectional structure of MOSFET (metal–oxide–semiconductor field-effect transistor), realized by P.C.Y. Chen of Fairchild Camera and Instrument in 1977. This structure is often used for non-volatile memories, such as EEPROM and flash memories. It is sometimes used for TFT LCD displays. It is one of CTF (charge trap flash) variants. It is distinguished from traditional non-volatile memory structures by the use of silicon nitride (Si3N4 or Si9N10) instead of "polysilicon-based FG (floating-gate)" for the charge storage material. A further variant is "SHINOS" ("silicon"—"hi-k"—"nitride"—"oxide"—"silicon"), which is substituted top oxide layer with high-κ material. Another advanced variant is "MONOS" ("metal–oxide–nitride–oxide–silicon"). Companies offering SONOS-based products include Cypress Semiconductor, Macronix, Toshiba, United Microelectronics Corporation and FloadiaArchived 2022-11-01 at the Wayback Machine.

The "22 nm" node is the process step following 32 nm in CMOS MOSFET semiconductor device fabrication. The typical half-pitch for a memory cell using the process is around 22 nm. It was first demonstrated by semiconductor companies for use in RAM memory in 2008. In 2010, Toshiba began shipping 24 nm flash memory chips, and Samsung Electronics began mass-producing 20 nm flash memory chips. The first consumer-level CPU deliveries using a 22 nm process started in April 2012 with the Intel Ivy Bridge processors.

<span class="mw-page-title-main">Multigate device</span> MOS field-effect transistor with more than one gate

A multigate device, multi-gate MOSFET or multi-gate field-effect transistor (MuGFET) refers to a metal–oxide–semiconductor field-effect transistor (MOSFET) that has more than one gate on a single transistor. The multiple gates may be controlled by a single gate electrode, wherein the multiple gate surfaces act electrically as a single gate, or by independent gate electrodes. A multigate device employing independent gate electrodes is sometimes called a multiple-independent-gate field-effect transistor (MIGFET). The most widely used multi-gate devices are the FinFET and the GAAFET, which are non-planar transistors, or 3D transistors.

In semiconductor manufacturing, the International Roadmap for Devices and Systems defines the "5 nm" process as the MOSFET technology node following the "7 nm" node. In 2020, Samsung and TSMC entered volume production of "5 nm" chips, manufactured for companies including Apple, Marvell, Huawei and Qualcomm.

<span class="mw-page-title-main">Field-effect transistor</span> Type of transistor

The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. It comes in two types: junction FET (JFET) and metal-oxide-semiconductor FET (MOSFET). FETs have three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source.

<span class="mw-page-title-main">Memory cell (computing)</span> Part of computer memory

The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 and reset to store a logic 0. Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it.

Flexible silicon refers to a flexible piece of mono-crystalline silicon. Several processes have been demonstrated in the literature for obtaining flexible silicon from single crystal silicon wafers.

References

  1. Stefan Ferdinand Müller (2016). Development of HfO2-Based Ferroelectric Memories for Future CMOS Technology Nodes. BoD – Books on Demand. ISBN   9783739248943.
  2. Park et al. 2016, §1.1.1, p.3.
  3. 1 2 3 Park et al. 2016, §1.1.1, p.4.
  4. Park et al. 2016, § 1.1.2, p.6.
  5. 1 2 Zschech, Ehrenfried; Whelan, Caroline; Mikolajick, Thomas, eds. (2005), Materials for Information Technology: Devices, Interconnects and Packaging, Springer, pp. 157 –
  6. Khosla, Robin; Sharma, Deepak K.; Mondal, Kunal; Sharma, Satinder K. (2014-10-13). "Effect of electrical stress on Au/Pb (Zr0.52Ti0.48) O3/TiOxNy/Si gate stack for reliability analysis of ferroelectric field effect transistors". Applied Physics Letters. 105 (15): 152907. Bibcode:2014ApPhL.105o2907K. doi:10.1063/1.4897952. ISSN   0003-6951.
  7. Dünkel, S. (Dec 2017), "A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond", 2017 IEEE International Electron Devices Meeting (IEDM), pp. 19.7.1–19.7.4, doi:10.1109/IEDM.2017.8268425, ISBN   978-1-5386-3559-9, S2CID   19624615
  8. Lapedus, Mark (16 Feb 2017), "What Are FeFETs?", semiengineering.com

Further reading