Z-RAM

Last updated

Z-RAM is a tradename of a now-obsolete dynamic random-access memory technology that did not require a capacitor to maintain its state. Z-RAM was developed between 2002 and 2010 by a now-defunct company named Innovative Silicon.

Z-RAM relies on the floating body effect, an artifact of the silicon on insulator (SOI) process which places transistors in isolated tubs (the transistor body voltages "float" with respect to the wafer substrate beneath the tubs). The floating body effect causes a variable capacitance to appear between the bottom of the tub and the underlying substrate. The floating body effect is usually a parasitic effect that bedevils circuit designs, but also allows a DRAM-like cell to be built without adding a separate capacitor, the floating body effect then taking the place of the conventional capacitor. Because the capacitor is located under the transistor (instead of adjacent to, or above the transistor as in conventional DRAMs), another connotation of the name "Z-RAM" is that it extends in the negative z-direction.

Theoretically, a reduced cell size would have allowed denser storage, which in turn could (when used with large blocks) have improved access times by reducing the physical distance that data would have to travel to exit a block. For a large cache memory (as typically found in a high-performance microprocessor), Z-RAM would then have been potentially as fast as the SRAM used for conventional on-processor (L1/L2) caches, but with lower surface area (and thus cost). However, with advances in manufacturing techniques for conventional SRAM (most importantly, the transition to 32nm fabrication node), Z-RAM lost its size advantage.

Although AMD licensed the second generation Z-RAM in 2006, the processor manufacturer abandoned its Z-RAM plans in January 2010. Similarly, DRAM producer Hynix had also licensed Z-RAM for use in DRAM chips in 2007, and Innovative Silicon announced it was jointly developing a non-SOI version of Z-RAM that could be manufactured on lower cost bulk CMOS technology in March 2010, but Innovative Silicon closed on June 29, 2010. Its patent portfolio was acquired by Micron Technology in December 2010.

Related Research Articles

<span class="mw-page-title-main">Computer memory</span> Computer component that stores information for immediate use

Computer memory stores information, such as data and programs, for immediate use in the computer. The term memory is often synonymous with the term primary storage or main memory. An archaic synonym for memory is store.

<span class="mw-page-title-main">Static random-access memory</span> Type of computer memory

Static random-access memory is a type of random-access memory (RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is volatile memory; data is lost when power is removed.

<span class="mw-page-title-main">Dynamic random-access memory</span> Type of computer memory

Dynamic random-access memory is a type of random-access semiconductor memory that stores each bit of data in a memory cell, usually consisting of a tiny capacitor and a transistor, both typically based on metal–oxide–semiconductor (MOS) technology. While most DRAM memory cell designs use a capacitor and transistor, some only use two transistors. In the designs where a capacitor is used, the capacitor can either be charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. The electric charge on the capacitors gradually leaks away; without intervention the data on the capacitor would soon be lost. To prevent this, DRAM requires an external memory refresh circuit which periodically rewrites the data in the capacitors, restoring them to their original charge. This refresh process is the defining characteristic of dynamic random-access memory, in contrast to static random-access memory (SRAM) which does not require data to be refreshed. Unlike flash memory, DRAM is volatile memory, since it loses its data quickly when power is removed. However, DRAM does exhibit limited data remanence.

Non-volatile random-access memory (NVRAM) is random-access memory that retains data without applied power. This is in contrast to dynamic random-access memory (DRAM) and static random-access memory (SRAM), which both maintain data only for as long as power is applied, or forms of sequential-access memory such as magnetic tape, which cannot be randomly accessed but which retains data indefinitely without electric power.

Magnetoresistive random-access memory (MRAM) is a type of non-volatile random-access memory which stores data in magnetic domains. Developed in the mid-1980s, proponents have argued that magnetoresistive RAM will eventually surpass competing technologies to become a dominant or even universal memory. Currently, memory technologies in use such as flash RAM and DRAM have practical advantages that have so far kept MRAM in a niche role in the market.

In semiconductor manufacturing, silicon on insulator (SOI) technology is fabrication of silicon semiconductor devices in a layered silicon–insulator–silicon substrate, to reduce parasitic capacitance within the device, thereby improving performance. SOI-based devices differ from conventional silicon-built devices in that the silicon junction is above an electrical insulator, typically silicon dioxide or sapphire. The choice of insulator depends largely on intended application, with sapphire being used for high-performance radio frequency (RF) and radiation-sensitive applications, and silicon dioxide for diminished short-channel effects in other microelectronics devices. The insulating layer and topmost silicon layer also vary widely with application.

Nano-RAM is a proprietary computer memory technology from the company Nantero. It is a type of nonvolatile random-access memory based on the position of carbon nanotubes deposited on a chip-like substrate. In theory, the small size of the nanotubes allows for very high density memories. Nantero also refers to it as NRAM.

Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space, around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

Volatile memory, in contrast to non-volatile memory, is computer memory that requires power to maintain the stored information; it retains its contents while powered on but when the power is interrupted, the stored data is quickly lost.

Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a silicon integrated circuit memory chip. There are numerous different types using different semiconductor technologies. The two main types of random-access memory (RAM) are static RAM (SRAM), which uses several transistors per memory cell, and dynamic RAM (DRAM), which uses a transistor and a MOS capacitor per cell. Non-volatile memory uses floating-gate memory cells, which consist of a single floating-gate transistor per cell.

<span class="mw-page-title-main">1T-SRAM</span> Pseudo-static random-access memory technology introduced by MoSys Inc.

1T-SRAM is a pseudo-static random-access memory (PSRAM) technology introduced by MoSys, Inc. in September 1998, which offers a high-density alternative to traditional static random-access memory (SRAM) in embedded memory applications. Mosys uses a single-transistor storage cell like dynamic random-access memory (DRAM), but surrounds the bit cell with control circuitry that makes the memory functionally equivalent to SRAM. 1T-SRAM has a standard single-cycle SRAM interface and appears to the surrounding logic just as an SRAM would.

<span class="mw-page-title-main">Ferroelectric RAM</span> Novel type of computer memory

Ferroelectric RAM is a random-access memory similar in construction to DRAM but using a ferroelectric layer instead of a dielectric layer to achieve non-volatility. FeRAM is one of a growing number of alternative non-volatile random-access memory technologies that offer the same functionality as flash memory. An FeRAM chip contains a thin film of ferroelectric material, often lead zirconate titanate, commonly referred to as PZT. The atoms in the PZT layer change polarity in an electric field, thereby producing a power-efficient binary switch. However, the most important aspect of the PZT is that it is not affected by power disruption or magnetic interference, making FeRAM a reliable nonvolatile memory.

Embedded DRAM (eDRAM) is dynamic random-access memory (DRAM) integrated on the same die or multi-chip module (MCM) of an application-specific integrated circuit (ASIC) or microprocessor. eDRAM's cost-per-bit is higher when compared to equivalent standalone DRAM chips used as external memory, but the performance advantages of placing eDRAM onto the same chip as the processor outweigh the cost disadvantages in many applications. In performance and size, eDRAM is positioned between level 3 cache and conventional DRAM on the memory bus, and effectively functions as a level 4 cache, though architectural descriptions may not explicitly refer to it in those terms.

Memory refresh is the process, for the purpose of preserving the information, of periodically reading information from an area of computer memory and immediately rewriting the read information to the same area without modification. Memory refresh is a background maintenance process required during the operation of semiconductor dynamic random-access memory (DRAM), the most widely used type of computer memory, and in fact is the defining characteristic of this class of memory.

The floating body effect is the effect of dependence of the body potential of a transistor realized by the silicon on insulator (SOI) technology on the history of its biasing and the carrier recombination processes. The transistor's body forms a capacitor against the insulated substrate. The charge accumulates on this capacitor and may cause adverse effects, for example, opening of parasitic transistors in the structure and causing off-state leakages, resulting in higher current consumption and in case of DRAM in loss of information from the memory cells. It also causes the history effect, the dependence of the threshold voltage of the transistor on its previous states. In analog devices, the floating body effect is known as the kink effect.

Charge trap flash (CTF) is a semiconductor memory technology used in creating non-volatile NOR and NAND flash memory. It is a type of floating-gate MOSFET memory technology, but differs from the conventional floating-gate technology in that it uses a silicon nitride film to store electrons rather than the doped polycrystalline silicon typical of a floating-gate structure. This approach allows memory manufacturers to reduce manufacturing costs five ways:

  1. Fewer process steps are required to form a charge storage node
  2. Smaller process geometries can be used
  3. Multiple bits can be stored on a single flash memory cell
  4. Improved reliability
  5. Higher yield since the charge trap is less susceptible to point defects in the tunnel oxide layer
<span class="mw-page-title-main">Random-access memory</span> Form of computer data storage

Random-access memory is a form of electronic computer memory that can be read and changed in any order, typically used to store working data and machine code. A random-access memory device allows data items to be read or written in almost the same amount of time irrespective of the physical location of data inside the memory, in contrast with other direct-access data storage media, where the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement.

Advanced-Random Access Memory (RAM) is a type of dynamic random-access memory (DRAM) based on single-transistor capacitor-less cells. A-RAM was invented in 2009 at the University of Granada (UGR), in Spain, in collaboration with the Centre National de la Recherche Scientifique (CNRS), in France. It was conceived by Noel Rodriguez (UGR), Francisco Gamiz (UGR) and Sorin Cristoloveanu (CNRS). A-RAM is compatible with single-gate silicon on insulator (SOI), double-gate, FinFETs and multiple-gate field-effect transistors (MuFETs).

Thyristor RAM (T-RAM) is a type of random-access memory dating from 2009 invented and developed by T-RAM Semiconductor, which departs from the usual designs of memory cells, combining the strengths of the DRAM and SRAM: high density and high speed. This technology, which exploits the electrical property known as negative differential resistance and is called thin capacitively-coupled thyristor, is used to create memory cells capable of very high packing densities. Due to this, the memory is highly scalable, and already has a storage density that is several times higher than found in conventional 6T SRAM. It was expected that the next generation of T-RAM memory will have the same density as DRAM.

<span class="mw-page-title-main">Memory cell (computing)</span> Part of computer memory

The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 and reset to store a logic 0. Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it.

References