CD-RW

Last updated

Logo of Compact Disc-ReWritable (CD-RW). CDRW-Logo.svg
Logo of Compact Disc-ReWritable (CD-RW).
CD-RW with distinctively darker data surface than a CD-R and a factory-pressed CD-ROM. CD-RW bottom.jpg
CD-RW with distinctively darker data surface than a CD-R and a factory-pressed CD-ROM.

CD-RW (Compact Disc-Rewritable) is a digital optical disc storage format introduced in 1997.[ citation needed ] A CD-RW compact disc (CD-RWs) can be written, read, erased, and re-written.

Contents

CD-RWs, as opposed to CDs, require specialized readers that have sensitive laser optics. Consequently, CD-RWs cannot be read in many CD readers built prior to the introduction of CD-RW. CD-ROM drives with a "MultiRead" certification are compatible.

CD-RWs must be erased or blanked before reuse. Erasure methods include full blanking where the entire surface of the disc is erased and fast blanking where only metadata areas, such as PMA, TOC and pregap, are cleared. Fast blanking is quicker and usually sufficient to allow rewriting the disc. Full blanking removes all traces of the previous data, [1] and is often used for confidentiality purposes.

CD-RWs can sustain fewer re-writes compared to other storage media (ca. 1,000 compared up to 100,000). They are ideally used for test discs (e.g. for CD authoring), temporary backups, and as a middle-ground between online and offline storage schemes.

CD-MO

Before CD-RW technology, in 1990 a standard for magneto-optical recordable and erasable CDs called CD-MO was introduced and set in the Orange Book, part 1 as a CD with a magneto-optical recording layer. The CD-MO standard allowed for an optional non-erasable zone on the disc that could be read by CD-ROM units.

Data recording (and erasing) was achieved by heating the magneto-optical layer's material (e.g. Dy Fe Co or less often Tb Fe Co or Gd Fe Co) to its Curie point and then using a magnetic field to write the new data, in a manner essentially identical to Sony's MiniDisc and other magneto-optical formats. Reading the discs relied on the Kerr effect a major format flaw. The rewrite could only be read in special drives and was incompatible with non-magneto-optical enabled drives. The format was never released commercially, [2] mostly because of incompatibility with standard CD reading units. Early CD-R media contained a similar compatibility flaw.

Since the CD-MO was otherwise identical to CDs, the format still adopted a spiral-groove recording scheme, rendering the disc poorly suited as a removable medium for repeated, small-scale deletions and recordings. Some magneto-optical drives and media with the same form factor don't have this limitation. Unlike modern CD-RWs, CD-MO allowed for hybrid discs containing both an unmodifiable, pressed section, readable in standard drives, and a writable MO section.

The early introduction and no standards for disc recording software, file systems, and formats, physical incompatibility, coupled with more economical CD-R discs, led to abandoning the format. [3] [4] Other magneto-optical media, unbound by limitations of the typical CD-ROM filesystems, replaced the CD-MO.

Mechanism of action

Rewritable media can, with suitable hardware, be re-written up to 100 000 times. The CD-RW is based on phase change technology, with a degree of reflection at 15–25%, [5] compared to 40–70% for CD-R discs. [5] The properties of the medium and the write and erase procedure is defined in the Orange Book Part III.

To maintain a precise rotation speed, tracks have a slight superimposed sinusoidal excursion of 0.3 µm at a frequency of 22.05  kHz . [5] In addition a 1 kHz frequency modulation is applied to provide the recorder with an absolute time reference. [5] Groove width is 0.6  μm and pitch of 1.6 μm. [5]

The media for CD-RW has the same layers as CD-R media. The reflective layer is, however, a silver-indium-antimony-tellurium (AgInSbTe) alloy with a polycrystalline structure and reflective properties in its original state. When writing the laser beam uses its maximum power (8-14 mW) [5] to heat the material to 500–700 °C causing material liquefaction. In this state, the alloy loses its polycrystalline structure and reflectivity and assumes an amorphous state. The lost reflectivity serves the same function as bumps on manufactured CDs and the opaque spots on a CD-R are read as a 0. [6] The polycrystalline state of the disc forms the trenches, which are read as 1. [6] The scanning signal when reading is created by strong or weak reflection of the laser beam. To erase the disc, the write beam heats the amorphous regions with low power to about 200 °C. The alloy is not melted, but returns to the polycrystalline state and is again reflective.

Authoring

Data structure on a CD-RW CDRW PMA.jpg
Data structure on a CD-RW

During and after a disc authoring the distribution of data on the CD-RW varies. The following areas are present:

Each session on a multi-session disc has a corresponding lead-in, PMA, PA and lead-out. When the session is closed TOC information in the PMA is written into a lead-in area and the PCA and PMA are logically eliminated. The lead-out is created to mark the end of the data in the session.

Speed specifications

Specification [7] LogoSpeed
(Original, "slow") CDRW-Logo.svg 1×, 2×, 4×
High Speed CDHSRW.svg 8×, 10×, 12×
Ultra Speed CDRW UltraSpeed-Logo.svg 16×, 20×, 24×
Ultra Speed+ CDRW UltraSpeed-Plus-Logo.svg 32×
Philips created the "High-Speed" CD-RW logo for media that supports writing speeds above 4x. CDHSRW.svg
Philips created the "High-Speed" CD-RW logo for media that supports writing speeds above 4×.

Like a CD-R, a CD-RW has hardcoded speed specifications which limit recording speeds to fairly restrictive ranges. Unlike a CD-R, a CD-RW has a minimum writing speed under which the discs cannot be recorded, based on the phase change material's heating and cooling time constants and the required laser energy levels. Despite this, some professional audio CD recorders, such as those made by Tascam, use special techniques to bypass these limitations and can record high speed (but not ultra speed) discs in realtime.[ citation needed ]

Since the CD-RW discs need to be blanked before recording data, writing too slowly or with too low energy on a high speed unblanked disc will cause the phase change layer to cool before blanking is achieved, preventing the data from being properly written.

Similarly, using inappropriately high amounts of laser energy will cause the material to overheat and be insensitive to the data, a situation typical of slower discs used in a high powered and fast specification drive.[ citation needed ]

For these reasons, older CD-RW drives that lack appropriate firmware and hardware are not compatible with newer, high-speed CD-RW discs, while newer drives can record to older CD-RW discs, provided their firmware correct speed, delay, and power settings can be appropriately set.

The actual reading speed of CD-RW discs, however, is not directly correlated or bound to speed specification, but depends primarily on the reading drive's capabilities.

Many half-height CD and DVD writers released between 2004 and 2010, including the TSSTcorp SH-M522 combo drive (2004), Pioneer DVR-110D (2005), [8] Hitachi-LG GSA-4167 (2005) [9] , TSSTcorp SH-S182/S183 (2006) and SH-S203/TS-H653B (2007) have officially adapted support for CD-RW UltraSpeed Plus (32× Z-CLV), while more recent DVD writers such as the SH-224DB (2013) and Blu-Ray writers such as the LG BE16NU50 (2016) have downgraded the backwards compatibility to CD-RW UltraSpeed (24× Z-CLV). [10] [11]

Slim type optical drives are subject to physical limitations, thus are not able to attain rotation speeds of half-height (desktop) optical drives. They usually support CD-RW writing speeds of 16× [12] [13] [14] or 24× Z-CLV in zones of 10× CLV, 16× CLV, 20× CLV and 24× CLV towards the outer edge, of which the highest speed zone depends on availability. [10] [11] [15] [16]

See also

Related Research Articles

<span class="mw-page-title-main">Compact disc</span> Digital optical disc data storage format

The compact disc (CD) is a digital optical disc data storage format that was co-developed by Philips and Sony to store and play digital audio recordings. In August 1982, the first compact disc was manufactured. It was then released in October 1982 in Japan and branded as Digital Audio Compact Disc.

<span class="mw-page-title-main">CD-R</span> Recordable optical disc technology

CD-R is a digital optical disc storage format. A CD-R disc is a compact disc that can be written once and read arbitrarily many times.

<span class="mw-page-title-main">Optical disc</span> Flat, usually circular disc that encodes binary data

An optical disc is a flat, usually disc-shaped object that stores information in the form of physical variations on its surface that can be read with the aid of a beam of light. Optical discs can be reflective, where the light source and detector are on the same side of the disc, or transmissive, where light shines through the disc to be detected on the other side.

<span class="mw-page-title-main">Optical disc drive</span> Type of computer disk storage dive

In computing, an optical disc drive is a disc drive that uses laser light or electromagnetic waves within or near the visible light spectrum as part of the process of reading or writing data to or from optical discs. Some drives can only read from certain discs, but recent drives can both read and record, also called burners or writers. Compact discs, DVDs, and Blu-ray discs are common types of optical media which can be read and recorded by such drives.

<span class="mw-page-title-main">Magneto-optical drive</span>

A magneto-optical drive is a kind of optical disc drive capable of writing and rewriting data upon a magneto-optical disc. Both 130 mm (5.25 in) and 90 mm (3.5 in) form factors exist. In 1983, just a year after the introduction of the compact disc, Kees Schouhamer Immink and Joseph Braat presented the first experiments with erasable magneto-optical compact discs during the 73rd AES Convention in Eindhoven. The technology was introduced commercially in 1985. Although optical, they normally appear as hard disk drives to an operating system and can be formatted with any file system. Magneto-optical drives were common in some countries, such as Japan, but have fallen into disuse.

<span class="mw-page-title-main">DVD-RAM</span> Variant of DVD designed with random access in mind

DVD-RAM is a DVD-based disc specification presented in 1996 by the DVD Forum, which specifies rewritable DVD-RAM media and the appropriate DVD writers. DVD-RAM media have been used in computers as well as camcorders and personal video recorders since 1998.

A DVD recorder is an optical disc recorder that uses optical disc recording technologies to digitally record analog or digital signals onto blank writable DVD media. Such devices are available as either installable drives for computers or as standalone components for use in television studios or home theater systems.

<span class="mw-page-title-main">Constant linear velocity</span>

In optical storage, constant linear velocity (CLV) is a qualifier for the rated speed of an optical disc drive, and may also be applied to the writing speed of recordable discs. CLV implies that the angular velocity varies during an operation, as contrasted with CAV modes. The concept of constant linear velocity was patented in 1886 by phonograph pioneers Chichester Bell and Charles Tainter.

<span class="mw-page-title-main">Verbatim (brand)</span> CD, DVD and Blu-ray disc brand and former manufacturer

Verbatim is a brand for storage media and flash memory products currently owned by CMC Magnetics Corporation (CMC), a Taiwanese company that is known for optical disc manufacturing. Formerly a subsidiary of Mitsubishi Chemical, the global business and assets of Verbatim were sold to CMC Magnetics in 2019 at an estimated price of $32 million USD.

DVD formats describe the physical properties of the optical disc and how data is stored and manipulated on the disc. The formats are varied according to use, with the largest differences being whether or not the disc is written to. Within each use category, there are often competing formats or implementations.

<span class="mw-page-title-main">Optical storage</span> Method to store and retrieve computer data using optics

Optical storage refers to a class of data storage systems that use light to read or write data to an underlying optical media. Although a number of optical formats have been used over time, the most common examples are optical disks like the compact disc (CD) and DVD. Reading and writing methods have also varied over time, but most modern systems as of 2023 use lasers as the light source and use it both for reading and writing to the discs. Britannica notes that it "uses low-power laser beams to record and retrieve digital (binary) data."

In computing, external storage refers to non-volatile (secondary) data storage outside a computer's own internal hardware, and thus can be readily disconnected and accessed elsewhere. Such storage devices may refer to removable media, compact flash drives, portable storage devices, or network-attached storage. Web-based cloud storage is the latest technology for external storage.

<span class="mw-page-title-main">DVD recordable</span> Recordable optical disk technology

DVD recordable and DVD rewritable are optical disc recording technologies. Both terms describe DVD optical discs that can be written to by a DVD recorder, whereas only 'rewritable' discs are able to erase and rewrite data. Data is written ('burned') to the disc by a laser, rather than the data being 'pressed' onto the disc during manufacture, like a DVD-ROM. Pressing is used in mass production, primarily for the distribution of home video.

<span class="mw-page-title-main">Optical disc recording technologies</span> List of technologies used to write to optical discs

Optical disc authoring requires a number of different optical disc recorder technologies working in tandem, from the optical disc media to the firmware to the control electronics of the optical disc drive.

<span class="mw-page-title-main">Ultra Density Optical</span> Optical disc designed for the storage of digital video

Ultra Density Optical (UDO) is an optical disc format designed for high-density storage of high-definition video and data. The format was introduced by Sony to replace the Magneto-optical disc format.

<span class="mw-page-title-main">Blu-ray Disc recordable</span>

Blu-ray Disc Recordable (BD-R) and Blu-ray Disc Recordable Erasable (BD-RE) refer to two direct to disc optical disc recording technologies that can be recorded on to a Blu-ray-based optical disc with an optical disc recorder. BD-R discs can be written to once, whereas BD-RE discs can be erased and re-recorded multiple times, similar to CD-R and CD-RW for a compact disc (CD). Disc capacities are 25 GB for single-layer discs, 50 GB for double-layer discs, 100 GB ("XL") for triple-layer, and 128 GB for quadruple-layer.

<span class="mw-page-title-main">DVD</span> Optical disc format

The DVD is a digital optical disc data storage format. It was invented and developed in 1995 and first released on November 1, 1996, in Japan. The medium can store any kind of digital data and has been widely used for video programs or formerly for storing software and other computer files as well. DVDs offer significantly higher storage capacity than compact discs (CD) while having the same dimensions. A standard single-layer DVD can store up to 4.7 GB of data, a dual-layer DVD up to 8.5 GB. Variants can store up to a maximum of 17.08 GB.

As of 2021, multiple consumer-oriented, optical-disk media formats are or were available:

The preservation of optical media is essential because it is a resource in libraries, and stores audio, video, and computer data to be accessed by patrons. While optical discs are generally more reliable and durable than older media types, environmental conditions and/or poor handling can result in lost information.

<span class="mw-page-title-main">CD-ROM</span> Pre-pressed compact disc containing computer data

A CD-ROM is a type of read-only memory consisting of a pre-pressed optical compact disc that contains data. Computers can read—but not write or erase—CD-ROMs. Some CDs, called enhanced CDs, hold both computer data and audio with the latter capable of being played on a CD player, while data is only usable on a computer.

References

  1. van Hove, Peter (c. 2012). "Quick erased (blanked) CD-RW vs. DVD-RW vs. DVD+RW, what's recoverable and how". IsoBuster. Archived from the original on 2012-09-24. Retrieved 2020-07-19.
  2. Upgrading and repairing PCs By Scott Mueller, page 739: "The Orange Book comes in three parts: Part I describes a format called CD-MO (magneto-optical), which was to be a rewritable format but was withdrawn before any products really came to market"
  3. "Product catalogue / Pricelist: CD products" (PDF). 6 February 2012. Archived from the original (PDF) on 6 April 2008. Retrieved 10 April 2018.
  4. "Sign in". GitLab.
  5. 1 2 3 4 5 6 "Frequently asked questions about hardware". Archived from the original on 2012-07-09. Retrieved 2011-05-15. CD Recordable and CD ReWriteable discs have the same basic structure but with significant detailed differences. The CD-R has a dye based recording layer, with a reflectivity of 40-70 %, while the CD-RW has a phase change recording layer with a reflectivity of 15-25 %. Both have an additional reflecting layer (gold) for the CD-R and (silver) for the CD-RW.
  6. 1 2 "How CD Burners Work". howstuffworks.com. 1 August 2001. Retrieved 10 April 2018.
  7. "CD-Recordable FAQ - section 4".
  8. "DVR-110D - Internal DVD/CD writer for desktop computer". Pioneer Electronics USA.
  9. "GSA-4167B Super Multi DVD Drive – Owner's Manual" (PDF). Hitachi-LG Data Storage. 2005. Archived (PDF) from the original on 2020-08-09. Retrieved 2020-08-09.
  10. 1 2 "archive.ph". archive.today. Archived from the original on 2020-07-11. Retrieved 2020-07-20.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  11. 1 2 "Manual".
  12. "Apple USB SuperDrive". Apple. Apple Inc.
  13. "Apple USB SuperDrive - DVD±RW (±R DL) drive - Hi-Speed USB Series Specs". CNET. CNet. Rewrite Speed: 16x (CD)
  14. HL-DT-ST BU20N specification sheet
  15. LiteOn eTAU108 - DVD±RW (±R DL) / DVD-RAM drive - Hi-Speed USB Series Specification sheet and picture - CNet.com, 2009; accessed July 11th 2020.
  16. "Downloads | eBAU108 Manual | External Slim DVD-RW | Manual". www.liteonodd.com. Lite-On. Archived from the original on 2015-03-10.