A graphics tablet (also known as a digitizer, digital graphic tablet, pen tablet, drawing tablet, external drawing pad or digital art board) is a computer input device that enables a user to hand-draw images, animations and graphics, with a special pen-like stylus, similar to the way a person draws images with a pencil and paper.
Graphics tablets may also be used to capture data or handwritten signatures. They can also be used to trace an image from a piece of paper that is taped or otherwise secured to the tablet surface. Capturing data in this way, by tracing or entering the corners of linear polylines or shapes, is called digitizing. [1]
The device consists of a rough surface upon which the user may "draw" or trace an image using the attached stylus, a pen-like drawing apparatus. The image is shown on the computer monitor, though some graphic tablets now also incorporate an LCD screen for more realistic or natural experience and usability.
Some tablets are intended as a replacement for the computer mouse as the primary pointing and navigation device for desktop computers.
The first electronic handwriting device was the Telautograph, patented by Elisha Gray in 1888. [2]
The first graphic tablet resembling contemporary tablets and used for handwriting recognition by a computer was the Stylator in 1957. [3] Better known (and often misstated as the first digitizer tablet) is the RAND Tablet [4] also known as the Grafacon [5] (for Graphic Converter), introduced in 1964. The RAND Tablet employed a grid of wires under the surface of the pad that encoded horizontal and vertical coordinates in a small electrostatic signal. The stylus received the signal by capacitive coupling, which could then be decoded back as coordinate information.
The acoustic tablet, or spark tablet, used a stylus that generated clicks with a spark plug. The clicks were then triangulated by a series of microphones to locate the pen in space. [6] The system was fairly complex and expensive, and the sensors were susceptible to interference by external noise.
Digitizers were popularized in the mid-1970s and early 1980s by the commercial success of the ID (Intelligent Digitizer) and BitPad manufactured by the Summagraphics Corp. [7] The Summagraphics digitizers were sold under the company's name but were also private labeled for HP, Tektronix, Apple, [8] Evans and Sutherland and several other graphic system manufacturers. The ID model was the first graphics tablet to make use of what was at the time, the new Intel microprocessor technology. This embedded processing power allowed the ID models to have twice the accuracy of previous models while still making use of the same foundation technology. Key to this accuracy improvement were two US Patents issued to Stephen Domyan, Robert Davis, and Edward Snyder. The Bit Pad model was the first attempt at a low cost graphics tablet with an initial selling price of $555 when other graphics tablets were selling in the $2,000 to $3,000 price range. This lower cost opened up the opportunities for would be entrepreneurs to be able to write graphics software for a multitude of new applications. These digitizers were used as the input device for many high-end CAD (Computer Aided Design) systems as well as bundled with PCs and PC-based CAD software like AutoCAD. These tablets used a magnetostriction technology which used wires made of a special alloy stretched over a solid substrate to accurately locate the tip of a stylus or the center of a digitizer cursor on the surface of the tablet. This technology also allowed Proximity or "Z" axis measurement. [9]
In 1981, musician Todd Rundgren created the first color graphic tablet software for personal computers, which was licensed to Apple as the Utopia Graphic Tablet System. [10]
In 1981, the Quantel Paintbox color graphic workstation was released; This model was equipped with the first pressure sensitive tablet. [11]
The first home computer graphic tablet was the KoalaPad, released in 1983. Though originally designed for the Apple II, the Koala eventually broadened its applicability to other home computers including the TRS-80 Color Computer, Commodore 64, and Atari 8-bit computers.
In the 1980s, several vendors of graphic tablets began to include additional functions, such as handwriting recognition and on-tablet menus. [12] [13]
Typically tablets are characterized by size of the device, drawing area, its resolution size («active area», which is measured in lpi), pressure sensitivity (level of varying the size of strokes with pressure), [14] number of buttons and types and number of interfaces: Bluetooth, USB; etc. [15] The actual drawing accuracy is restricted to pen's nib size. [16]
There have been many attempts to categorize the technologies that have been used for graphic tablets:
For all these technologies, the tablet can use the received signal to also determine the distance of the stylus from the surface of the tablet, the tilt (angle from vertical) of the stylus, and other information in addition to the horizontal and vertical positions, such as clicking buttons of the stylus or the rotation of the stylus.
Compared to touchscreens, a graphic tablet generally offers much higher precision, the ability to track an object which is not touching the tablet, and can gather much more information about the stylus, but is typically more expensive, and can only be used with the special stylus or other accessories.
Some tablets, especially inexpensive ones aimed at young children, come with a corded stylus, using technology similar to older RAND tablets.
After styluses, pucks are the most commonly used tablet accessory. A puck is a mouse-like device that can detect its absolute position and rotation. This is opposed to a mouse, which can only sense its relative velocity on a surface (most tablet drivers are capable of allowing a puck to emulate a mouse in operation, and many pucks are marketed as a "mouse").
Pucks range in size and shape; some are externally indistinguishable from a mouse, while others are a fairly large device with dozens of buttons and controls. Professional pucks often have a reticle or loupe which allows the user to see the exact point on the tablet's surface targeted by the puck, for detailed tracing and computer aided design (CAD) work.
Pucks are used on the Microsoft Surface range and were recently used on the Dell Canvas. However, they have been largely discontinued by most manufactures in favour of physical hotkeys and dials.
Some graphics tablets incorporate an LCD into the tablet itself, allowing the user to draw directly on the screen.
Graphics tablet/screen hybrids offer advantages over both standard PC touchscreens and ordinary graphics tablets. Unlike touchscreens, they offer pressure sensitivity, and their input resolution is generally higher.[ citation needed ] While their pressure sensitivity and resolution are typically no better than those of ordinary tablets, they offer the additional advantage of directly seeing the location of the physical pen device relatively to the image on the screen. This often allows for increased accuracy and a more tactile, "real" feeling to the use of the device.
The graphics tablet manufacturer Wacom holds many patents on key technologies for graphics tablets, [22] which forces competitors to use other technologies or license Wacom's patents. The displays are often sold for thousands of dollars. For instance, the Wacom Cintiq series ranges from just below US$1,000 to over US$2,000.
Some commercially available graphics tablet/screen hybrids include:
There have also been do-it-yourself projects where conventional used LCD monitors and graphics tablets have been converted to a graphics tablet-screen hybrid. [23]
Graphic tablets, because of their stylus-based interface and ability to detect some or all of pressure, tilt, and other attributes of the stylus and its interaction with the tablet, are widely considered to offer a very natural way to create computer graphics, especially two-dimensional computer graphics. Indeed, many graphic packages can make use of the pressure (and, sometimes, stylus tilt or rotation) information generated by a tablet, by modifying the brush size, shape, opacity, color, or other attributes based on data received from the graphic tablet.
In East Asia, graphic tablets, known as "pen tablets", are widely used in conjunction with input-method editor software (IMEs) to write Chinese, Japanese, and Korean characters (CJK). The technology is popular and inexpensive and offers a method for interacting with the computer in a more natural way than typing on the keyboard, with the pen tablet supplanting the role of the computer mouse. Uptake of handwriting recognition among users who use alphabetic scripts has been slower.
Graphic tablets are commonly used in the artistic world. Using a pen-like stylus on a graphic tablet combined with a graphics-editing program, such as Illustrator, Photoshop by Adobe Systems, Corelpainter, or Krita gives artists a lot of precision when creating digital drawings or artwork. Photographers can also find working with a graphic tablet during their post processing can really speed up tasks like creating a detailed layer mask or dodging and burning.
Educators make use of tablets in classrooms to project handwritten notes or lessons and to allow students to do the same, as well as providing feedback on student work submitted electronically. Online teachers may also use a tablet for marking student work, or for live tutorials or lessons, especially where complex visual information or mathematical equations are required. Students are also increasingly using them as note-taking devices, especially during university lectures while following along with the lecturer. They facilitate smooth online teaching process and are popularly used along with face-cam to mimic classroom experience.
Tablets are also popular for technical drawings and CAD, as one can typically put a piece of paper on them without interfering with their function.
Finally, tablets are gaining popularity as a replacement for the computer mouse as a pointing device.[ when? ] They can feel more intuitive to some users than a mouse, as the position of a pen on a tablet typically corresponds to the location of the pointer on the GUI shown on the computer screen. Those artists using a pen for graphic work may, as a matter of convenience, use a tablet and pen for standard computer operations rather than put down the pen and find a mouse. Popular rhythm game osu! allows utilizing a tablet as a way of playing. [24]
Graphic tablets are available in various sizes and price ranges; A6-sized tablets being relatively inexpensive and A3-sized tablets far more expensive. Modern tablets usually connect to the computer via a USB or HDMI interface.
Interactive whiteboards offer high-resolution wall size graphic tablets up to 95" (241,3 cm) along with options for pressure and multiple input. These are becoming commonplace in schools and meeting rooms around the world. [25]
Earlier resistive touch screen devices (like PDAs, early smartphones, tablet PCs, and the Nintendo DS) were typically equipped with styluses, but accuracy of stylus input was very limited.
The more modern capacitive touch screens such as those found on some table computers, tablet computers and laptops operate in similar ways, but they usually use either optical grids or a pressure-sensitive film instead so do not need a special pointing device. Some of the latest models with capacitive input can be equipped with specialized styluses, and then these input devices can be used similar to full-function graphics tablet. [26] [27] [28]
A graphic tablet is also used for Audio-Haptic products where blind or visually impaired people touch swelled graphics on a graphic tablet and get audio feedback from that. [29] The product that is using this technology is called Tactile Talking Tablet or T3.
A pointing device is a human interface device that allows a user to input spatial data to a computer. Graphical user interfaces (GUI) and CAD systems allow the user to control and provide data to the computer using physical gestures by moving a hand-held mouse or similar device across the surface of the physical desktop and activating switches on the mouse. Movements of the pointing device are echoed on the screen by movements of the pointer and other visual changes. Common gestures are point and click and drag and drop.
Handwriting recognition (HWR), also known as handwritten text recognition (HTR), is the ability of a computer to receive and interpret intelligible handwritten input from sources such as paper documents, photographs, touch-screens and other devices. The image of the written text may be sensed "off line" from a piece of paper by optical scanning or intelligent word recognition. Alternatively, the movements of the pen tip may be sensed "on line", for example by a pen-based computer screen surface, a generally easier task as there are more clues available. A handwriting recognition system handles formatting, performs correct segmentation into characters, and finds the most possible words.
A stylus is a writing utensil or a small tool for some other form of marking or shaping, for example, in pottery. It can also be a computer accessory that is used to assist in navigating or providing more precision when using touchscreens. It usually refers to a narrow elongated staff, similar to a modern ballpoint pen. Many styluses are heavily curved to be held more easily. Another widely used writing tool is the stylus used by blind users in conjunction with the slate for punching out the dots in Braille.
A touchpad or trackpad is a type of pointing device. Its largest component is a tactile sensor: an electronic device with a flat surface, that detects the motion and position of a user's fingers, and translates them to 2D motion, to control a pointer in a graphical user interface on a computer screen. Touchpads are common on laptop computers, contrasted with desktop computers, where mice are more prevalent. Trackpads are sometimes used on desktops, where desk space is scarce. Because trackpads can be made small, they can be found on personal digital assistants (PDAs) and some portable media players. Wireless touchpads are also available, as detached accessories.
A touchscreen is a type of display that can detect touch input from a user. It consists of both an input device and an output device. The touch panel is typically layered on the top of the electronic visual display of a device. Touchscreens are commonly found in smartphones, tablets, laptops, and other electronic devices.
An interactive whiteboard (IWB), also known as interactive board or smart board, is a large interactive display board in the form factor of a whiteboard. It can either be a standalone touchscreen computer used independently to perform tasks and operations, or a connectable apparatus used as a touchpad to control computers from a projector. They are used in a variety of settings, including classrooms at all levels of education, in corporate board rooms and work groups, in training rooms for professional sports coaching, in broadcasting studios, and others.
A digital pen is an input device which captures the handwriting or brush strokes of a user and converts handwritten analog information created using "pen and paper" into digital data, enabling the data to be utilized in various applications. This type of pen is usually used in conjunction with a digital notebook, although the data can also be used for different applications or simply as a graphic.
A tablet computer, commonly shortened to tablet, is a mobile device, typically with a mobile operating system and touchscreen display processing circuitry, and a rechargeable battery in a single, thin and flat package. Tablets, being computers, have similar capabilities, but lack some input/output (I/O) abilities that others have. Modern tablets largely resemble modern smartphones, the only differences being that tablets are relatively larger than smartphones, with screens 7 inches (18 cm) or larger, measured diagonally, and may not support access to a cellular network. Unlike laptops, tablets usually run mobile operating systems, alongside smartphones.
In computing, multi-touch is technology that enables a surface to recognize the presence of more than one point of contact with the surface at the same time. The origins of multitouch began at CERN, MIT, University of Toronto, Carnegie Mellon University and Bell Labs in the 1970s. CERN started using multi-touch screens as early as 1976 for the controls of the Super Proton Synchrotron. Capacitive multi-touch displays were popularized by Apple's iPhone in 2007. Multi-touch may be used to implement additional functionality, such as pinch to zoom or to activate certain subroutines attached to predefined gestures using gesture recognition.
Pen computing refers to any computer user-interface using a pen or stylus and tablet, over input devices such as a keyboard or a mouse.
A text entry interface or text entry device is an interface that is used to enter text information in an electronic device. A commonly used device is a mechanical computer keyboard. Most laptop computers have an integrated mechanical keyboard, and desktop computers are usually operated primarily using a keyboard and mouse. Devices such as smartphones and tablets mean that interfaces such as virtual keyboards and voice recognition are becoming more popular as text entry systems.
A resistive touchscreen is a type of touch-sensitive display that works by detecting pressure applied to the screen. It is composed of two flexible sheets coated with a resistive material and separated by an air gap or microdots.
In computing, an input device is a piece of equipment used to provide data and control signals to an information processing system, such as a computer or information appliance. Examples of input devices include keyboards, computer mice, scanners, cameras, joysticks, and microphones.
Handwriting movement analysis is the study and analysis of the movements involved in handwriting and drawing. It forms an important part of graphonomics, which became established after the "International Workshop on Handwriting Movement Analysis" in 1982 in Nijmegen, The Netherlands. It would become the first of a continuing series of International Graphonomics Conferences. The first graphonomics milestone was Thomassen, Keuss, Van Galen, Grootveld (1983).
In computing, a stylus is a small pen-shaped instrument whose tip position on a computer monitor can be detected. It is used to draw, or make selections by tapping. While devices with touchscreens such as newer computers, mobile devices, game consoles, and graphics tablets can usually be operated with a fingertip, a stylus provides more accurate and controllable input. The stylus has the same function as a mouse or touchpad as a pointing device; its use is commonly called pen computing.
The history of tablet computers and the associated special operating software is an example of pen computing technology, and thus the development of tablets has deep historical roots. The first patent for a system that recognized handwritten characters by analyzing the handwriting motion was granted in 1914. The first publicly demonstrated system using a tablet and handwriting recognition instead of a keyboard for working with a modern digital computer dates to 1956.
Microsoft Tablet PC is a term coined by Microsoft for tablet computers conforming to a set of specifications announced in 2001 by Microsoft, for a pen-enabled personal computer, conforming to hardware specifications devised by Microsoft and running a licensed copy of Windows XP Tablet PC Edition operating system or a derivative thereof.
The RAND Tablet is a graphical computer input device developed by The RAND Corporation. The RAND Tablet is claimed to be the first digital graphic device marketed as being a low cost device. The creation of the tablet was performed by the Advanced Research Projects Agency. The RAND Tablet was one of the first devices to utilize a stylus as a highly practical instrument.
The Surface Pro is a first generation 2-in-1 detachable of the Microsoft Surface series, designed and manufactured by Microsoft. The device ran a 64-bit version of Windows 8 Pro operating system with a free upgrade possibility to Windows 8.1 Pro, and eventually also Windows 10. Initially announced as Surface for Windows 8 Pro on June 18, 2012, at a Los Angeles event, Microsoft later renamed the device to Surface Pro, and launched it on February 9, 2013.
An active pen is an input device that includes electronic components and allows users to write directly onto the display of a computing device such as a smartphone, tablet computer or ultrabook. The active pen marketplace has long been dominated by N-trig and Wacom, but newer firms Atmel and Synaptics also offer active pen designs.
{{cite web}}
: CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: numeric names: authors list (link)