Electrostatics

Last updated

Electrostatics is a branch of physics that studies electric charges at rest.

Contents

An electrostatic effect: styrofoam peanuts clinging to a cat's fur due to static electricity. The triboelectric effect causes an electrostatic charge to build up on the surface of the fur due to the cat's motions. The electric field of the charge causes polarization of the molecules of the styrofoam due to electrostatic induction, resulting in a slight attraction of the light plastic pieces to the charged fur. This effect is also the cause of static cling in clothes. Cat demonstrating static cling with styrofoam peanuts.jpg
An electrostatic effect: styrofoam peanuts clinging to a cat's fur due to static electricity. The triboelectric effect causes an electrostatic charge to build up on the surface of the fur due to the cat's motions. The electric field of the charge causes polarization of the molecules of the styrofoam due to electrostatic induction, resulting in a slight attraction of the light plastic pieces to the charged fur. This effect is also the cause of static cling in clothes.

Since classical physics, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber, ήλεκτρον, or electron, was thus the source of the word 'electricity'. Electrostatic phenomena arise from the forces that electric charges exert on each other. Such forces are described by Coulomb's law. Even though electrostatically induced forces seem to be rather weak, some electrostatic forces such as the one between an electron and a proton, that together make up a hydrogen atom, is about 36 orders of magnitude stronger than the gravitational force acting between them.

There are many examples of electrostatic phenomena, from those as simple as the attraction of the plastic wrap to one's hand after it is removed from a package to the apparently spontaneous explosion of grain silos, the damage of electronic components during manufacturing, and photocopier & laser printer operation. Electrostatics involves the buildup of charge on the surface of objects due to contact with other surfaces. Although charge exchange happens whenever any two surfaces contact and separate, the effects of charge exchange are usually only noticed when at least one of the surfaces has a high resistance to electrical flow. This is because the charges that transfer are trapped there for a time long enough for their effects to be observed. These charges then remain on the object until they either bleed off to ground or are quickly neutralized by a discharge: e.g., the familiar phenomenon of a static "shock" is caused by the neutralization of charge built up in the body from contact with insulated surfaces.

Coulomb's law

Coulomb's law states that:

'The magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them.'

The force is along the straight line joining them. If the two charges have the same sign, the electrostatic force between them is repulsive; if they have different signs, the force between them is attractive.

If is the distance (in meters) between two charges, then the force (in newtons) between two point charges and (in coulombs) is:

where ε0 is the vacuum permittivity, or permittivity of free space: [1]

The SI units of ε0 are equivalently A 2 s 4 kg−1m−3 or C 2 N 1m2 or F m1. Coulomb's constant is:

A single proton has a charge of e, and the electron has a charge of −e, where,

These physical constants0, k0, e) are currently defined so that ε0 and k0 are exactly defined, and e is a measured quantity.

Electric field

The electrostatic field (lines with arrows) of a nearby positive charge (+) causes the mobile charges in conductive objects to separate due to electrostatic induction. Negative charges (blue) are attracted and move to the surface of the object facing the external charge. Positive charges (red) are repelled and move to the surface facing away. These induced surface charges are exactly the right size and shape so their opposing electric field cancels the electric field of the external charge throughout the interior of the metal. Therefore, the electrostatic field everywhere inside a conductive object is zero, and the electrostatic potential is constant. Electrostatic induction.svg
The electrostatic field (lines with arrows) of a nearby positive charge (+) causes the mobile charges in conductive objects to separate due to electrostatic induction. Negative charges (blue) are attracted and move to the surface of the object facing the external charge. Positive charges (red) are repelled and move to the surface facing away. These induced surface charges are exactly the right size and shape so their opposing electric field cancels the electric field of the external charge throughout the interior of the metal. Therefore, the electrostatic field everywhere inside a conductive object is zero, and the electrostatic potential is constant.

The electric field, , in units of newtons per coulomb or volts per meter, is a vector field that can be defined everywhere, except at the location of point charges (where it diverges to infinity). [2] It is defined as the electrostatic force in newtons on a hypothetical small test charge at the point due to Coulomb's Law, divided by the magnitude of the charge in coulombs

Electric field lines are useful for visualizing the electric field. Field lines begin on positive charge and terminate on negative charge. They are parallel to the direction of the electric field at each point, and the density of these field lines is a measure of the magnitude of the electric field at any given point.

Consider a collection of particles of charge , located at points (called source points), the electric field at (called the field point) is: [2]

where is the displacement vector from a source point to the field point, and is a unit vector that indicates the direction of the field. For a single point charge at the origin, the magnitude of this electric field is and points away from that charge is positive. The fact that the force (and hence the field) can be calculated by summing over all the contributions due to individual source particles is an example of the superposition principle. The electric field produced by a distribution of charges is given by the volume charge density and can be obtained by converting this sum into a triple integral:

Gauss' law

Gauss' law states that "the total electric flux through any closed surface in free space of any shape drawn in an electric field is proportional to the total electric charge enclosed by the surface." Mathematically, Gauss's law takes the form of an integral equation:

where is a volume element. If the charge is distributed over a surface or along a line, replace by or . The divergence theorem allows Gauss's Law to be written in differential form:

where is the divergence operator.

Poisson and Laplace equations

The definition of electrostatic potential, combined with the differential form of Gauss's law (above), provides a relationship between the potential Φ and the charge density ρ:

This relationship is a form of Poisson's equation. In the absence of unpaired electric charge, the equation becomes Laplace's equation:

Electrostatic approximation

The validity of the electrostatic approximation rests on the assumption that the electric field is irrotational:

From Faraday's law, this assumption implies the absence or near-absence of time-varying magnetic fields:

In other words, electrostatics does not require the absence of magnetic fields or electric currents. Rather, if magnetic fields or electric currents do exist, they must not change with time, or in the worst-case, they must change with time only very slowly. In some problems, both electrostatics and magnetostatics may be required for accurate predictions, but the coupling between the two can still be ignored. Electrostatics and magnetostatics can both be seen as Galilean limits for electromagnetism. [3] [ verification needed ]

Electrostatic potential

As the electric field is irrotational, it is possible to express the electric field as the gradient of a scalar function,, called the electrostatic potential (also known as the voltage). An electric field, , points from regions of high electric potential to regions of low electric potential, expressed mathematically as

The gradient theorem can be used to establish that the electrostatic potential is the amount of work per unit charge required to move a charge from point to point with the following line integral:

From these equations, we see that the electric potential is constant in any region for which the electric field vanishes (such as occurs inside a conducting object).

Electrostatic energy

A single test particle's potential energy, , can be calculated from a line integral of the work, . We integrate from a point at infinity, and assume a collection of particles of charge , are already situated at the points . This potential energy (in Joules) is:

where is the distance of each charge from the test charge , which situated at the point , and is the electric potential that would be at if the test charge were not present. If only two charges are present, the potential energy is . The total electric potential energy due a collection of N charges is calculating by assembling these particles one at a time:

where the following sum from, j = 1 to N, excludes i = j:

This electric potential, is what would be measured at if the charge were missing. This formula obviously excludes the (infinite) energy that would be required to assemble each point charge from a disperse cloud of charge. The sum over charges can be converted into an integral over charge density using the prescription :

,

This second expression for electrostatic energy uses the fact that the electric field is the negative gradient of the electric potential, as well as vector calculus identities in a way that resembles integration by parts. These two integrals for electric field energy seem to indicate two mutually exclusive formulas for electrostatic energy density, namely and ; they yield equal values for the total electrostatic energy only if both are integrated over all space. [4]

Electrostatic pressure

On a conductor, a surface charge will experience a force in the presence of an electric field. This force is the average of the discontinuous electric field at the surface charge. This average in terms of the field just outside the surface amounts to:

,

This pressure tends to draw the conductor into the field, regardless of the sign of the surface charge.

Triboelectric series

The triboelectric effect is a type of contact electrification in which certain materials become electrically charged when they are brought into contact with a different material and then separated. One of the materials acquires a positive charge, and the other acquires an equal negative charge. The polarity and strength of the charges produced differ according to the materials, surface roughness, temperature, strain, and other properties. Amber, for example, can acquire an electric charge by friction with a material like wool. This property, first recorded by Thales of Miletus, was the first electrical phenomenon investigated by humans. Other examples of materials that can acquire a significant charge when rubbed together include glass rubbed with silk, and hard rubber rubbed with fur.

Electrostatic generators

The presence of surface charge imbalance means that the objects will exhibit attractive or repulsive forces. This surface charge imbalance, which yields static electricity, can be generated by touching two differing surfaces together and then separating them due to the phenomena of contact electrification and the triboelectric effect. Rubbing two nonconductive objects generates a great amount of static electricity. This is not just the result of friction; two nonconductive surfaces can become charged by just being placed one on top of the other. Since most surfaces have a rough texture, it takes longer to achieve charging through contact than through rubbing. Rubbing objects together increases amount of adhesive contact between the two surfaces. Usually insulators, e.g., substances that do not conduct electricity, are good at both generating, and holding, a surface charge. Some examples of these substances are rubber, plastic, glass, and pith. Conductive objects only rarely generate charge imbalance except, for example, when a metal surface is impacted by solid or liquid nonconductors. The charge that is transferred during contact electrification is stored on the surface of each object. Electrostatic generators, devices which produce very high voltage at very low current and used for classroom physics demonstrations, rely on this effect.

The presence of electric current does not detract from the electrostatic forces nor from the sparking, from the corona discharge, or other phenomena. Both phenomena can exist simultaneously in the same system.

See also: Wimshurst machine , and Van de Graaff generator .

Charge neutralization

Natural electrostatic phenomena are most familiar as an occasional annoyance in seasons of low humidity, but can be destructive and harmful in some situations (e.g. electronics manufacturing). When working in direct contact with integrated circuit electronics (especially delicate MOSFETs). In the presence of flammable gas, care must be taken to avoid accumulating and suddenly discharging a static charge (see Electrostatic discharge).

Electrostatic induction

Electrostatic induction, discovered by British scientist John Canton in 1753 and Swedish professor Johan Carl Wilcke in 1762 [5] [6] [7] is a redistribution of charges in an object caused by the electric field of a nearby charge. For example, if a positively charged object is brought near an uncharged metal object, the mobile negatively-charged electrons in the metal will be attracted by the external charge, and move to the side of the metal facing it, creating a negative charge on the surface. When the electrons move out of an area they leave a positive charge due to the metal atoms' nuclei, so the side of the metal object facing away from the charge acquires a positive charge. These induced charges disappear when the external charge is removed. Induction is also responsible for the attraction of light objects, such as balloons, paper scraps and styrofoam packing peanuts to static charges. The surface charges induced in conductive objects exactly cancel external electric fields inside the conductor, so there is no electric field inside a metal object. This is the basis for the electric field shielding action of a Faraday cage. Since the electric field is the gradient of the voltage, electrostatic induction is also responsible for making the electric potential (voltage) constant throughout a conductive object.

Static electricity

Lightning over Oradea in Romania Lightning over Oradea Romania 3.jpg
Lightning over Oradea in Romania

Before the year 1832, when Michael Faraday published the results of his experiment on the identity of electricities, physicists thought "static electricity" was somehow different from other electrical charges. Michael Faraday proved that the electricity induced from the magnet, voltaic electricity produced by a battery, and static electricity are all the same.

Static electricity is usually caused when certain materials are rubbed against each other, like wool on plastic or the soles of shoes on carpet. The process causes electrons to be pulled from the surface of one material and relocated on the surface of the other material.

A static shock occurs when the surface of the second material, negatively charged with electrons, touches a positively charged conductor, or vice versa.

Static electricity is commonly used in xerography, air filters, and some automotive coating processes. Static electricity is a build-up of electric charges on two objects that have become separated from each other. Small electrical components can be damaged by static electricity, and component manufacturers use a number of antistatic devices to avoid this.

Static electricity and chemical industry

When different materials are brought together and then separated, an accumulation of electric charge can occur which leaves one material positively charged while the other becomes negatively charged. The mild shock that you receive when touching a grounded object after walking on carpet is an example of excess electrical charge accumulating in your body from frictional charging between your shoes and the carpet. The resulting charge build-up upon your body can generate a strong electrical discharge. Although experimenting with static electricity may be fun, similar sparks create severe hazards in those industries dealing with flammable substances, where a small electrical spark may ignite explosive mixtures with devastating consequences.

A similar charging mechanism can occur within low conductivity fluids flowing through pipelines—a process called flow electrification. Fluids which have low electrical conductivity (below 50 picosiemens per meter), are called accumulators. Fluids having conductivities above 50 pS/m are called non-accumulators. In non-accumulators, charges recombine as fast as they are separated and hence electrostatic charge generation is not significant. In the petrochemical industry, 50 pS/m is the recommended minimum value of electrical conductivity for adequate removal of charge from a fluid.

An important concept for insulating fluids is the static relaxation time. This is similar to the time constant (tau) within an RC circuit. For insulating materials, it is the ratio of the static dielectric constant divided by the electrical conductivity of the material. For hydrocarbon fluids, this is sometimes approximated by dividing the number 18 by the electrical conductivity of the fluid. Thus a fluid that has an electrical conductivity of 1 pS/cm (100 pS/m) will have an estimated relaxation time of about 18 seconds. The excess charge within a fluid will be almost completely dissipated after 4 to 5 times the relaxation time, or 90 seconds for the fluid in the above example.

Charge generation increases at higher fluid velocities and larger pipe diameters, becoming quite significant in pipes 8 inches (200 mm) or larger. Static charge generation in these systems is best controlled by limiting fluid velocity. The British standard BS PD CLC/TR 50404:2003 (formerly BS-5958-Part 2) Code of Practice for Control of Undesirable Static Electricity prescribes velocity limits. Because of its large impact on dielectric constant, the recommended velocity for hydrocarbon fluids containing water should be limited to 1 m/s.

Bonding and earthing are the usual ways by which charge buildup can be prevented. For fluids with electrical conductivity below 10 pS/m, bonding and earthing are not adequate for charge dissipation, and anti-static additives may be required.

Applicable standards

  • BS PD CLC/TR 50404:2003 Code of Practice for Control of Undesirable Static Electricity
  • NFPA 77 (2007) Recommended Practice on Static Electricity
  • API RP 2003 (1998) Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents

Electrostatic induction in commercial applications

Electrostatic induction was used in the past to build high-voltage generators known as influence machines. The main component that emerged in these times is the capacitor. Electrostatic induction is also used for electro-mechanic precipitation or projection. In such technologies, charged particles of small sizes are collected or deposited intentionally on surfaces. Applications range from electrostatic precipitator to electrostatic coating and inkjet printing. Recently a new wireless power transfer technology has been based on electrostatic induction between oscillating distant dipoles.

See also

Footnotes

  1. Matthew Sadiku (2009). Elements of electromagnetics. p. 104. ISBN   9780195387759.
  2. 1 2 Purcell, Edward M. (2013). Electricity and Magnetism. Cambridge University Press. pp. 16–18. ISBN   978-1107014022.
  3. Heras, J. A. (2010). "The Galilean limits of Maxwell's equations". American Journal of Physics . 78 (10): 1048–1055. arXiv: 1012.1068 . Bibcode:2010AmJPh..78.1048H. doi:10.1119/1.3442798.
  4. Fedosin, Sergey G. (2019). "The integral theorem of the field energy". Gazi University Journal of Science. 32 (2): 686–703. doi:10.5281/zenodo.3252783.
  5. "Electricity". Encyclopaedia Britannica, 11th Ed. 9. The Encyclopaedia Britannica Co. 1910. p. 181. Retrieved 2008-06-23.
  6. Heilbron, J. L. (1979). Electricity in the 17th and 18th Centuries: A Study of Early Modern Physics. Univ. of California Press. ISBN   0520034783.
  7. Sarkar, T. K.; Mailloux, Robert; Oliner, Arthur A., Ed. (2006). History of Wireless. John Wiley and Sons. p. 9. ISBN   0471783013.

Related Research Articles

Potential energy Energy held by an object because of its position

In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.

Electric field Vector field representing the Coulomb force per unit charge that would be exerted on a test charge at each point due to other electric charges

An electric field surrounds an electric charge, and exerts force on other charges in the field, attracting or repelling them. Electric fields are created by electric charges, or by time-varying magnetic fields. Electric fields and magnetic fields are both manifestations of the electromagnetic force, one of the four fundamental forces of nature.

Permittivity physical quantity, measure of the resistance to the electric field

In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε (epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material. In electrostatics, the permittivity plays an important role in determining the capacitance of a capacitor.

An electric potential is the amount of work needed to move a unit of charge from a reference point to a specific point inside the field without producing an acceleration. Typically, the reference point is the Earth or a point at infinity, although any point can be used.

Gausss law Foundational law of electromagnetism

In physics, Gauss's law, also known as Gauss's flux theorem, is a law relating the distribution of electric charge to the resulting electric field. The surface under consideration may be a closed one enclosing a volume such as a spherical surface.

Synchrotron radiation electromagnetic radiation emitted when charged particles are accelerated radially

Synchrotron radiation is the electromagnetic radiation emitted when charged particles are accelerated radially, e.g., when they are subject to an acceleration perpendicular to their velocity. It is produced, for example, in synchrotrons using bending magnets, undulators and/or wigglers. If the particle is non-relativistic, then the emission is called cyclotron emission. If, on the other hand, the particles are relativistic, sometimes referred to as ultrarelativistic, the emission is called synchrotron emission. Synchrotron radiation may be achieved artificially in synchrotrons or storage rings, or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization and the frequencies generated can range over the entire electromagnetic spectrum which is also called continuum radiation.

In physics, screening is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases, electrolytes, and charge carriers in electronic conductors . In a fluid, with a given permittivity ε, composed of electrically charged constituent particles, each pair of particles interact through the Coulomb force as

Poissons equation Expression frequently encountered in mathematical physics, generalization of Laplaces equation.

Poisson's equation is an elliptic partial differential equation of broad utility theoretical physics. For example, the solution to Poisson's equation the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.

Classical electromagnetism Branch of theoretical physics that studies consequences of the electromagnetic forces between electric charges and currents

Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics.

Displacement current Physical quantity in electromagnetism

In electromagnetism, displacement current density is the quantity D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials, there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.

In plasmas and electrolytes, the Debye length, named after Peter Debye, is a measure of a charge carrier's net electrostatic effect in a solution and how far its electrostatic effect persists. A Debye sphere is a volume whose radius is the Debye length. With each Debye length, charges are increasingly electrically screened. Every Debye‐length , the electric potential will decrease in magnitude by 1/e. Debye length is an important parameter in plasma physics, electrolytes, and colloids. The corresponding Debye screening wave vector for particles of density , charge at a temperature is given by in Gaussian units. Expressions in MKS units will be given below. The analogous quantities at very low temperatures are known as the Thomas–Fermi length and the Thomas–Fermi wave vector. They are of interest in describing the behaviour of electrons in metals at room temperature.

In physics, the electric displacement field or electric induction is a vector field that appears in Maxwell's equations. It accounts for the effects of free and bound charge within materials. "D" stands for "displacement", as in the related concept of displacement current in dielectrics. In free space, the electric displacement field is equivalent to flux density, a concept that lends understanding to Gauss's law. In the International System of Units (SI), it is expressed in units of coulomb per meter square (C⋅m−2).

Electric potential energy potential energy that results from conservative Coulomb forces

Electric potential energy, or Electrostatic potential energy, is a potential energy that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system. An object may have electric potential energy by virtue of two key elements: its own electric charge and its relative position to other electrically charged objects.

Debye–Hückel equation

The chemists Peter Debye and Erich Hückel noticed that solutions that contain ionic solutes do not behave ideally even at very low concentrations. So, while the concentration of the solutes is fundamental to the calculation of the dynamics of a solution, they theorized that an extra factor that they termed gamma is necessary to the calculation of the activity coefficients of the solution. Hence they developed the Debye–Hückel equation and Debye–Hückel limiting law. The activity is only proportional to the concentration and is altered by a factor known as the activity coefficient . This factor takes into account the interaction energy of ions in solution.

Gaussian surface closed surface in three-dimensional space through which the flux of a vector field is calculated; usually the gravitational field, the electric field, or magnetic field

A Gaussian surface is a closed surface in three-dimensional space through which the flux of a vector field is calculated; usually the gravitational field, the electric field, or magnetic field. It is an arbitrary closed surface S = ∂V used in conjunction with Gauss's law for the corresponding field by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of gravitational mass as the source of the gravitational field or amount of electric charge as the source of the electrostatic field, or vice versa: calculate the fields for the source distribution.

The method of image charges is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain elements in the original layout with imaginary charges, which replicates the boundary conditions of the problem.

Spherical multipole moments are the coefficients in a series expansion of a potential that varies inversely with the distance R to a source, i.e., as 1/R. Examples of such potentials are the electric potential, the magnetic potential and the gravitational potential.

Mathematical descriptions of the electromagnetic field Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

Coulombs law Fundamental physical law of electromagnetism

Coulomb's law, or Coulomb's inverse-square law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force. The quantity of electrostatic force between stationary charges is always described by Coulomb's law. The law was first published in 1785 by French physicist Charles-Augustin de Coulomb, and was essential to the development of the theory of electromagnetism, maybe even its starting point, because it was now possible to discuss quantity of electric charge in a meaningful way.

Electric dipole moment vector physical quantity

The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI units for electric dipole moment are coulomb-meter (C⋅m); however, a commonly used unit in atomic physics and chemistry is the debye (D).

References

Further reading

Essays
Books

Wikiversity-logo.svg Learning materials related to Electrostatics at Wikiversity