Galilean electromagnetism

Last updated

Galilean electromagnetism is a formal electromagnetic field theory that is consistent with Galilean invariance. Galilean electromagnetism is useful for describing the electric and magnetic fields in the vicinity of charged bodies moving at non-relativistic speeds relative to the frame of reference. The resulting mathematical equations are simpler than the fully relativistic forms because certain coupling terms are neglected. [lower-alpha 1] :12

Contents

In electrical networks, Galilean electromagnetism provides possible tools to derive the equations used in low-frequency approximations in order to quantify the current crossing a capacitor or the voltage induced in a coil. As such, Galilean electromagnetism can be used to regroup and explain the somehow dynamic but non-relativistic quasistatic approximations of Maxwell's equations.

Overview

In 1905 Albert Einstein made use of the non-Galilean character of Maxwell's equations to develop his theory of special relativity. The special property embedded in Maxwell's equations is known as the Lorentz invariance. In Maxwell's equations frame, assuming that the speed of moving charges is small compared to the speed of light, it is possible to derive approximations that fulfill Galilean invariance. This approach enables the rigorous definition of two main mutually exclusive limits known as quasi-electrostatics (electrostatics with displacement currents or ohmic currents) and quasi-magnetostatics (magnetostatics with electric field caused by variation of magnetic field according to Faraday's law, or by ohmic currents). [1] [2] [3] Quasi-static approximations are often poorly introduced in literature as stated for instance in Hermann A. Hauss and James R. Melcher's book. [4] [5] They are often presented as a single one whereas Galilean electromagnetism shows that the two regimes are in general mutually exclusive. According to Germain Rousseaux, [1] the existence of these two exclusive limits explains why electromagnetism has long been thought to be incompatible with Galilean transformations. However Galilean transformations applying in both cases (magnetic limit and electric limit) were known by engineers before the topic was discussed by Jean-Marc Lévy-Leblond. [6] These transformations are found in H. H. Woodson and Melcher's 1968 book. [7] [lower-alpha 2]

If the transit time of the electromagnetic wave passing through the system is much less than a typical time scale of the system, then Maxwell equations can be reduced to one of the Galilean limits. For instance, for dielectrical liquids it is quasielectrostatics, and for highly conducting liquids quasimagnetostatics. [2]

History

Electromagnetism followed a reverse path compared to mechanics. In mechanics, the laws were first derived by Isaac Newton in their Galilean form. They had to wait for Albert Einstein and his special relativity theory to take a relativistic form. Einstein has then allowed a generalization of Newton's laws of motion to describe the trajectories of bodies moving at relativistic speeds. In the electromagnetic frame, James Clerk Maxwell directly derived the equations in their relativistic form, although this property had to wait for Hendrik Lorentz and Einstein to be discovered.

As late as 1963, Edward Mills Purcell's Electricity and Magnetism [lower-alpha 3] :222 offered the following low velocity transformations as suitable for calculating the electric field experienced by a jet plane travelling in the Earth's magnetic field.

In 1973 Michel Le Bellac and Jean-Marc Lévy-Leblond [6] state that these equations are incorrect or misleading because they do not correspond to any consistent Galilean limit. Germain Rousseaux gives a simple example showing that a transformation from an initial inertial frame to a second frame with a speed of v0 with respect to the first frame and then to a third frame moving with a speed v1 with respect to the second frame would give a result different from going directly from the first frame to the third frame using a relative speed of (v0 + v1). [9]

Le Bellac and Lévy-Leblond offer two transformations that do have consistent Galilean limits as follows:

The electric limit applies when electric field effects are dominant such as when Faraday's law of induction was insignificant.

The magnetic limit applies when the magnetic field effects are dominant.

John David Jackson's Classical Electrodynamics introduces a Galilean transformation for the Faraday's equation and gives an example of a quasi-electrostatic case that also fulfills a Galilean transformation. [10] :209–210 Jackson states that the wave equation is not invariant under Galilean transformations. [10] :515–516

In 2013, Rousseaux published a review and summary of Galilean electromagnetism. [1]

Further reading

Notes

  1. "For the experiments of electrodynamics of moving bodies with low speeds, the Galilean theory is the most adapted because it is easier of stake in work from the calculus point of view and does not bring in the kinematics effect of Special Relativity which are absolutely unimportant in the Galilean limit." [1]
  2. "According to us, the oldest reference to them is the book by Woodson and Melcher in 1968" [1]
  3. Note: Purcell uses electrostatic units, so the constants are different. This is the MKS version. [8]

Related Research Articles

<span class="mw-page-title-main">Electromagnetic field</span> Electric and magnetic fields produced by moving charged objects

An electromagnetic field is a mathematical representation of the influences on and due to electric charges. The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field. The way in which charges and currents interact with the electromagnetic field is described by Maxwell's equations and the Lorentz force law. Maxwell's equations detail how the electric field converges towards or diverges away from electric charges, how the magnetic field curls around electrical currents, and how changes in the electric and magnetic fields influence each other. The Lorentz force law states that a charge subject to an electric field feels a force along the direction of the field, and a charge moving through a magnetic field feels a force that is perpendicular both to the magnetic field and to its direction of motion. Because of the interrelationship between the fields, a disturbance in the electric field can create a disturbance in the magnetic field which in turn affects the electric field, leading to an oscillation that propagates through space, known as an electromagnetic wave.

<span class="mw-page-title-main">Maxwell's equations</span> Equations describing classical electromagnetism

Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside.

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer.
<span class="mw-page-title-main">Electric field</span> Physical field surrounding an electric charge

An electric field is the physical field that surrounds electrically charged particles. Charged particles exert attractive forces on each other when their charges are opposite, and repulsion forces on each other when their charges are the same. Because these forces are exerted mutually, two charges must be present for the forces to take place. The electric field of a single charge describes their capacity to exert such forces on another charged object. These forces are described by Coulomb's law, which says that the greater the magnitude of the charges, the greater the force, and the greater the distance between them, the weaker the force. Thus, we may informally say that the greater the charge of an object, the stronger its electric field. Similarly, an electric field is stronger nearer charged objects and weaker further away. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, Electromagnetism is one of the four fundamental interactions of nature.

Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer below the deck would not be able to tell whether the ship was moving or stationary.

<span class="mw-page-title-main">Faraday's law of induction</span> Basic law of electromagnetism

Faraday's law of induction is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction, is the fundamental operating principle of transformers, inductors, and many types of electric motors, generators and solenoids.

<span class="mw-page-title-main">Magnetostatics</span> Branch of physics about magnetism in systems with steady electric currents

Magnetostatics is the study of magnetic fields in systems where the currents are steady. It is the magnetic analogue of electrostatics, where the charges are stationary. The magnetization need not be static; the equations of magnetostatics can be used to predict fast magnetic switching events that occur on time scales of nanoseconds or less. Magnetostatics is even a good approximation when the currents are not static – as long as the currents do not alternate rapidly. Magnetostatics is widely used in applications of micromagnetics such as models of magnetic storage devices as in computer memory.

In physics, Albert Einstein derived the theory of special relativity in 1905 from principle now called the postulates of special relativity. Einstein's formulation is said to only require two postulates, though his derivation implies a few more assumptions.

What is now often called Lorentz ether theory (LET) has its roots in Hendrik Lorentz's "theory of electrons", which marked the end of the development of the classical aether theories at the end of the 19th and at the beginning of the 20th century.

<span class="mw-page-title-main">Relativistic electromagnetism</span> Physical phenomenon in electromagnetic field theory

Relativistic electromagnetism is a physical phenomenon explained in electromagnetic field theory due to Coulomb's law and Lorentz transformations.

<span class="mw-page-title-main">Moving magnet and conductor problem</span> Thought experiment in physics

The moving magnet and conductor problem is a famous thought experiment, originating in the 19th century, concerning the intersection of classical electromagnetism and special relativity. In it, the current in a conductor moving with constant velocity, v, with respect to a magnet is calculated in the frame of reference of the magnet and in the frame of reference of the conductor. The observable quantity in the experiment, the current, is the same in either case, in accordance with the basic principle of relativity, which states: "Only relative motion is observable; there is no absolute standard of rest". However, according to Maxwell's equations, the charges in the conductor experience a magnetic force in the frame of the magnet and an electric force in the frame of the conductor. The same phenomenon would seem to have two different descriptions depending on the frame of reference of the observer.

In physics, the principle of covariance emphasizes the formulation of physical laws using only those physical quantities the measurements of which the observers in different frames of reference could unambiguously correlate.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

<span class="mw-page-title-main">Classical electromagnetism and special relativity</span> Relationship between relativity and pre-quantum electromagnetism

The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws. It motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form.

The theory of special relativity was initially developed in 1905 by Albert Einstein. However, other interpretations of special relativity have been developed, some on the basis of different foundational axioms. While some are mathematically equivalent to Einstein's theory, others aim to revise or extend it.

Quasistatic approximation(s) refers to different domains and different meanings. In the most common acceptance, quasistatic approximation refers to equations that keep a static form (do not involve time derivatives) even if some quantities are allowed to vary slowly with time. In electromagnetism it refers to mathematical models that can be used to describe devices that do not produce significant amounts of electromagnetic waves. For instance the capacitor and the coil in electrical networks.

<span class="mw-page-title-main">Gravitoelectromagnetism</span> Analogies between Maxwells and Einsteins field equations

Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity. Gravitomagnetism is a widely used term referring specifically to the kinetic effects of gravity, in analogy to the magnetic effects of moving electric charge. The most common version of GEM is valid only far from isolated sources, and for slowly moving test particles.

<span class="mw-page-title-main">History of Maxwell's equations</span>

In the beginning of the 19th century, many experimental and theoretical works had been accomplished in the understanding of electromagnetics. In the 1780s, Charles-Augustin de Coulomb established his law of electrostatics. In 1825, André-Marie Ampère published his Ampère's force law. Michael Faraday discovered the electromagnetic induction through his experiments and conceptually, he emphasized the lines of forces in this electromagnetic induction. In 1834, Emil Lenz solved the problem of the direction of the induction, and Franz Ernst Neumann wrote down the equation to calculate the induced force by change of magnetic flux. However, these experimental results and rules were not well organized and sometimes confusing to scientists. A comprehensive summary of the electrodynamic principles was in urgent need at that time.

Electromagnetism is one of the fundamental forces of nature. Early on, electricity and magnetism were studied separately and regarded as separate phenomena. Hans Christian Ørsted discovered that the two were related – electric currents give rise to magnetism. Michael Faraday discovered the converse, that magnetism could induce electric currents, and James Clerk Maxwell put the whole thing together in a unified theory of electromagnetism. Maxwell's equations further indicated that electromagnetic waves existed, and the experiments of Heinrich Hertz confirmed this, making radio possible. Maxwell also postulated, correctly, that light was a form of electromagnetic wave, thus making all of optics a branch of electromagnetism. Radio waves differ from light only in that the wavelength of the former is much longer than the latter. Albert Einstein showed that the magnetic field arises through the relativistic motion of the electric field and thus magnetism is merely a side effect of electricity. The modern theoretical treatment of electromagnetism is as a quantum field in quantum electrodynamics.

In quantum mechanics, the Lévy-Leblond equation describes the dynamics of a spin-1/2 particle. It is a linearized version of the Schrödinger equation and of the Pauli equation. It was derived by French physicist Jean-Marc Lévy-Leblond in 1967.

References

  1. 1 2 3 4 5 Rousseaux, Germain (August 2013). "Forty years of Galilean Electromagnetism (1973-2013)" (PDF). The European Physical Journal Plus. 128 (8): 81. Bibcode:2013EPJP..128...81R. doi:10.1140/epjp/i2013-13081-5. S2CID   35373648 . Retrieved March 18, 2015.
  2. 1 2 A. Castellanos (1998). Electrohydrodynamics. Wien: Springer. ISBN   978-3-211-83137-3.
  3. Castellanos (4 May 2014). Electrohydrodynamics. Springer. ISBN   9783709125229.
  4. Hermann A. Haus and James R. Melcher (1989). Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall. ISBN   0-13-249020-X.
  5. Haus & Melcher. "Limits to Statics and Quasitstatics" (PDF). ocs.mit.edu. MIT OpenCourseWare. Retrieved 5 February 2016.
  6. 1 2 Le Bellac, M.; Levy-Leblond, J.M. (1973). "Galilean Electromagnetism" (PDF) (B 14, 217). Nuovo Cimento. Archived from the original (PDF) on October 21, 2016. Retrieved March 18, 2015.{{cite journal}}: Cite journal requires |journal= (help)
  7. Woodston, H.H.; Melcher, J.R. (1968). Electromechanical dynamics. New York: Wiley.
  8. Purcell, Edward M. (1963), Electricity and magnetism (1st ed.), McGraw-Hill, LCCN   64-66016
  9. Rousseaux, Germain (20 Jun 2008). "Comment on Momentum Transfer from Quantum Vacuum to Magnetoelectric Matter". Phys. Rev. Lett. 100 (24): 248901. Bibcode:2008PhRvL.100x8901R. doi:10.1103/physrevlett.100.248901. PMID   18643635 . Retrieved 16 February 2016.
  10. 1 2 Jackson, J. D. (1999). Classical Electrodynamics (3rd ed.). New York: Wiley. ISBN   0-471-30932-X.