Amber is fossilized tree resin. Examples of it have been appreciated for its color and natural beauty since the Neolithic times, [1] and worked as a gemstone since antiquity. [2] Amber is used in jewelry and as a healing agent in folk medicine.
There are five classes of amber, defined on the basis of their chemical constituents. Because it originates as a soft, sticky tree resin, amber sometimes contains animal and plant material as inclusions. [3] Amber occurring in coal seams is also called resinite, and the term ambrite is applied to that found specifically within New Zealand coal seams. [4]
The English word amber derives from Arabic ʿanbarعنبر [5] via Middle Latin ambar and Middle French ambre. The word referred to what is now known as ambergris (ambre gris or "gray amber"), a solid waxy substance derived from the sperm whale. The word, in its sense of "ambergris," was adopted in Middle English in the 14th century. [6]
In the Romance languages, the sense of the word was extended to Baltic amber (fossil resin) from as early as the late 13th century. [7] At first called white or yellow amber (ambre jaune), this meaning was adopted in English by the early 15th century. As the use of ambergris waned, this became the main sense of the word. [5] [ better source needed ]
The two substances ("yellow amber" and "gray amber") conceivably became associated or confused because they both were found washed up on beaches. Ambergris is less dense than water and floats, whereas amber is too dense to float, though less dense than stone. [8]
The classical names for amber, Ancient Greek ἤλεκτρον (ēlektron) and one of its Latin names, electrum, [a] are connected to a term ἠλέκτωρ (ēlektōr) meaning "beaming Sun". [10] [11] According to myth, when Phaëton son of Helios (the Sun) was killed, his mourning sisters became poplar trees, and their tears became elektron, amber. [12] The word elektron gave rise to the words electric, electricity, and their relatives because of amber's ability to bear a charge of static electricity. [13]
A number of regional and varietal names have been applied to ambers over the centuries, including Allingite, Beckerite, Gedanite, Kochenite, Krantzite, and Stantienite. [14]
Theophrastus discussed amber in the 4th century BCE, as did Pytheas (c. 330 BCE), whose work "On the Ocean" is lost, but was referenced by Pliny, according to whose Natural History : [15]
Pytheas says that the Gutones, a people of Germany, inhabit the shores of an estuary of the Ocean called Mentonomon, their territory extending a distance of six thousand stadia; that, at one day's sail from this territory, is the Isle of Abalus, upon the shores of which, amber is thrown up by the waves in spring, it being an excretion of the sea in a concrete form; as, also, that the inhabitants use this amber by way of fuel, and sell it to their neighbors, the Teutones.
Earlier Pliny says that Pytheas refers to a large island—three days' sail from the Scythian coast and called Balcia by Xenophon of Lampsacus (author of a fanciful travel book in Greek)—as Basilia—a name generally equated with Abalus. [16] Given the presence of amber, the island could have been Heligoland, Zealand, the shores of Gdańsk Bay, the Sambia Peninsula or the Curonian Lagoon, which were historically the richest sources of amber in northern Europe.[ citation needed ] There were well-established trade routes for amber connecting the Baltic with the Mediterranean (known as the "Amber Road"). Pliny states explicitly that the Germans exported amber to Pannonia, from where the Veneti distributed it onwards.
The ancient Italic peoples of southern Italy used to work amber; the National Archaeological Museum of Siritide (Museo Archeologico Nazionale della Siritide) at Policoro in the province of Matera (Basilicata) displays important surviving examples. It has been suggested that amber used in antiquity, as at Mycenae and in the prehistory of the Mediterranean, came from deposits in Sicily. [17]
Pliny also cites the opinion of Nicias (c. 470–413 BCE), according to whom amber
is a liquid produced by the rays of the sun; and that these rays, at the moment of the sun's setting, striking with the greatest force upon the surface of the soil, leave upon it an unctuous sweat, which is carried off by the tides of the Ocean, and thrown up upon the shores of Germany.
Besides the fanciful explanations according to which amber is "produced by the Sun", Pliny cites opinions that are well aware of its origin in tree resin, citing the native Latin name of succinum (sūcinum, from sucus "juice"). [18] In Book 37, section XI of Natural History, Pliny wrote:
Amber is produced from a marrow discharged by trees belonging to the pine genus, like gum from the cherry, and resin from the ordinary pine. It is a liquid at first, which issues forth in considerable quantities, and is gradually hardened [...] Our forefathers, too, were of opinion that it is the juice of a tree, and for this reason gave it the name of "succinum" and one great proof that it is the produce of a tree of the pine genus, is the fact that it emits a pine-like smell when rubbed, and that it burns, when ignited, with the odour and appearance of torch-pine wood. [19]
He also states that amber is also found in Egypt and India, and he even refers to the electrostatic properties of amber, by saying that "in Syria the women make the whorls of their spindles of this substance, and give it the name of harpax [from ἁρπάζω, "to drag"] from the circumstance that it attracts leaves towards it, chaff, and the light fringe of tissues".
The Romans traded for amber from the shores of the southern Baltic at least as far back as the time of Nero. [20]
Amber has a long history of use in China, with the first written record from 200 BCE. [21] Early in the 19th century, the first reports of amber found in North America came from discoveries in New Jersey along Crosswicks Creek near Trenton, at Camden, and near Woodbury. [2]
Amber is heterogeneous in composition, but consists of several resinous bodies[ clarify ] more or less soluble in alcohol, ether and chloroform, associated with an insoluble bituminous substance. Amber is a macromolecule formed by free radical polymerization [22] of several precursors in the labdane family, for example, communic acid, communol, and biformene. [23] [24] These labdanes are diterpenes (C20H32) and trienes, equipping the organic skeleton with three alkene groups for polymerization. As amber matures over the years, more polymerization takes place as well as isomerization reactions, crosslinking and cyclization. [25] [22]
Most amber has a hardness between 2.0 and 2.5 on the Mohs scale, a refractive index of 1.5–1.6, a specific gravity between 1.06 and 1.10, and a melting point of 250–300 °C. [26] Heated above 200 °C (392 °F), amber decomposes, yielding an oil of amber, and leaves a black residue which is known as "amber colophony", or "amber pitch"; when dissolved in oil of turpentine or in linseed oil this forms "amber varnish" or "amber lac". [23]
Molecular polymerization, [22] resulting from high pressures and temperatures produced by overlying sediment, transforms the resin first into copal. Sustained heat and pressure drives off terpenes and results in the formation of amber. [27] For this to happen, the resin must be resistant to decay. Many trees produce resin, but in the majority of cases this deposit is broken down by physical and biological processes. Exposure to sunlight, rain, microorganisms, and extreme temperatures tends to disintegrate the resin. For the resin to survive long enough to become amber, it must be resistant to such forces or be produced under conditions that exclude them. [28] Fossil resins from Europe fall into two categories, the Baltic ambers and another that resembles the Agathis group. Fossil resins from the Americas and Africa are closely related to the modern genus Hymenaea , [29] while Baltic ambers are thought to be fossil resins from plants of the family Sciadopityaceae that once lived in north Europe. [30]
The abnormal development of resin in living trees (succinosis) can result in the formation of amber. [31] Impurities are quite often present, especially when the resin has dropped onto the ground, so the material may be useless except for varnish-making. Such impure amber is called firniss. [32] Such inclusion of other substances can cause the amber to have an unexpected color. Pyrites may give a bluish color. Bony amber owes its cloudy opacity to numerous tiny bubbles inside the resin. [33] However, so-called black amber is really a kind of jet. [34] In darkly clouded and even opaque amber, inclusions can be imaged using high-energy, high-contrast, high-resolution X-rays. [35]
Amber is globally distributed in or around all continents, [36] mainly in rocks of Cretaceous age or younger. Historically, the coast west of Königsberg in Prussia was the world's leading source of amber. The first mentions of amber deposits there date back to the 12th century. [37] Juodkrantė in Lithuania was established in the mid-19th century as a mining town of amber. About 90% of the world's extractable amber is still located in that area, which was transferred to the Russian Soviet Federative Socialist Republic of the USSR in 1946, becoming the Kaliningrad Oblast. [38]
Pieces of amber torn from the seafloor are cast up by the waves and collected by hand, dredging, or diving. Elsewhere, amber is mined, both in open works and underground galleries. Then nodules of blue earth have to be removed and an opaque crust must be cleaned off, which can be done in revolving barrels containing sand and water. Erosion removes this crust from sea-worn amber. [33] Dominican amber is mined through bell pitting, which is dangerous because of the risk of tunnel collapse. [39]
An important source of amber is Kachin State in northern Myanmar, which has been a major source of amber in China for at least 1,800 years. Contemporary mining of this deposit has attracted attention for unsafe working conditions and its role in funding internal conflict in the country. [40] Amber from the Rivne Oblast of Ukraine, referred to as Rivne amber, is mined illegally by organised crime groups, who deforest the surrounding areas and pump water into the sediments to extract the amber, causing severe environmental deterioration. [41]
The Vienna amber factories, which use pale amber to manufacture pipes and other smoking tools, turn it on a lathe and polish it with whitening and water or with rotten stone and oil. The final luster is given by polishing with flannel. [33]
When gradually heated in an oil bath, amber "becomes soft and flexible. Two pieces of amber may be united by smearing the surfaces with linseed oil, heating them, and then pressing them together while hot. Cloudy amber may be clarified in an oil bath, as the oil fills the numerous pores that cause the turbidity. Small fragments, formerly thrown away or used only for varnish are now used on a large scale in the formation of "ambroid" or "pressed amber". [33] The pieces are carefully heated with exclusion of air and then compressed into a uniform mass by intense hydraulic pressure, the softened amber being forced through holes in a metal plate. The product is extensively used for the production of cheap jewelry and articles for smoking. This pressed amber yields brilliant interference colors in polarized light." [42]
Amber has often been imitated by other resins like copal and kauri gum, as well as by celluloid and even glass. Baltic amber is sometimes colored artificially but also called "true amber". [33]
Amber occurs in a range of different colors. As well as the usual yellow-orange-brown that is associated with the color "amber", amber can range from a whitish color through a pale lemon yellow, to brown and almost black. Other uncommon colors include red amber (sometimes known as "cherry amber"), green amber, and even blue amber, which is rare and highly sought after. [43]
Yellow amber is a hard fossil resin from evergreen trees, and despite the name it can be translucent, yellow, orange, or brown colored. Known to the Iranians by the Pahlavi compound word kah-ruba (from kah "straw" plus rubay "attract, snatch", referring to its electrical properties [13] ), which entered Arabic as kahraba' or kahraba (which later became the Arabic word for electricity, كهرباء kahrabā'), it too was called amber in Europe (Old French and Middle English ambre). Found along the southern shore of the Baltic Sea, yellow amber reached the Middle East and western Europe via trade. Its coastal acquisition may have been one reason yellow amber came to be designated by the same term as ambergris. Moreover, like ambergris, the resin could be burned as an incense. The resin's most popular use was, however, for ornamentation—easily cut and polished, it could be transformed into beautiful jewelry. Much of the most highly prized amber is transparent, in contrast to the very common cloudy amber and opaque amber. Opaque amber contains numerous minute bubbles. This kind of amber is known as "bony amber". [44]
Although all Dominican amber is fluorescent, the rarest Dominican amber is blue amber. It turns blue in natural sunlight and any other partially or wholly ultraviolet light source. In long-wave UV light it has a very strong reflection, almost white. Only about 100 kg (220 lb) is found per year, which makes it valuable and expensive. [45]
Sometimes amber retains the form of drops and stalactites, just as it exuded from the ducts and receptacles of the injured trees. [33] It is thought that, in addition to exuding onto the surface of the tree, amber resin also originally flowed into hollow cavities or cracks within trees, thereby leading to the development of large lumps of amber of irregular form.
Amber can be classified into several forms. Most fundamentally, there are two types of plant resin with the potential for fossilization. Terpenoids, produced by conifers and angiosperms, consist of ring structures formed of isoprene (C5H8) units. [1] Phenolic resins are today only produced by angiosperms, and tend to serve functional uses. The extinct medullosans produced a third type of resin, which is often found as amber within their veins. [1] The composition of resins is highly variable; each species produces a unique blend of chemicals which can be identified by the use of pyrolysis–gas chromatography–mass spectrometry. [1] The overall chemical and structural composition is used to divide ambers into five classes. [46] [47] There is also a separate classification of amber gemstones, according to the way of production.[ citation needed ]
This class is by far the most abundant. It comprises labdatriene carboxylic acids such as communic or ozic acids. [46] It is further split into three sub-classes. Classes Ia and Ib utilize regular labdanoid diterpenes (e.g. communic acid, communol, biformenes), while Ic uses enantio labdanoids (ozic acid, ozol, enantio biformenes). [48]
Class Ia includes Succinite (= 'normal' Baltic amber) and Glessite. [47] They have a communic acid base, and they also include much succinic acid. [46] Baltic amber yields on dry distillation succinic acid, the proportion varying from about 3% to 8%, and being greatest in the pale opaque or bony varieties. The aromatic and irritating fumes emitted by burning amber are mainly from this acid. Baltic amber is distinguished by its yield of succinic acid, hence the name succinite. Succinite has a hardness between 2 and 3, which is greater than many other fossil resins. Its specific gravity varies from 1.05 to 1.10. [23] It can be distinguished from other ambers via infrared spectroscopy through a specific carbonyl absorption peak. Infrared spectroscopy can detect the relative age of an amber sample. Succinic acid may not be an original component of amber but rather a degradation product of abietic acid. [49]
Class Ib ambers are based on communic acid; however, they lack succinic acid. [46]
Class Ic is mainly based on enantio-labdatrienonic acids, such as ozic and zanzibaric acids. [46] Its most familiar representative is Dominican amber,. [1] which is mostly transparent and often contains a higher number of fossil inclusions. This has enabled the detailed reconstruction of the ecosystem of a long-vanished tropical forest. [50] Resin from the extinct species Hymenaea protera is the source of Dominican amber and probably of most amber found in the tropics. It is not "succinite" but "retinite". [51]
These ambers are formed from resins with a sesquiterpenoid base, such as cadinene. [46]
These ambers are polystyrenes. [46]
Class IV is something of a catch-all: its ambers are not polymerized, but mainly consist of cedrene-based sesquiterpenoids. [46]
Class V resins are considered to be produced by a pine or pine relative. They comprise a mixture of diterpinoid resins and n-alkyl compounds. Their main variety is Highgate copalite . [47]
The oldest amber recovered dates to the late Carboniferous period ( 320 million years ago). [1] [52] Its chemical composition makes it difficult to match the amber to its producers – it is most similar to the resins produced by flowering plants; however, the first flowering plants appeared in the Early Cretaceous, about 200 million years after the oldest amber known to date, and they were not common until the Late Cretaceous. Amber becomes abundant long after the Carboniferous, in the Early Cretaceous, [1] when it is found in association with insects. The oldest amber with arthropod inclusions comes from the Late Triassic (late Carnian c. 230 Ma) of Italy, where four microscopic (0.2–0.1 mm) mites, Triasacarus, Ampezzoa, Minyacarus and Cheirolepidoptus, and a poorly preserved nematoceran fly were found in millimetre-sized droplets of amber. [53] [54] The oldest amber with significant numbers of arthropod inclusions comes from Lebanon. This amber, referred to as Lebanese amber, is roughly 125–135 million years old, is considered of high scientific value, providing evidence of some of the oldest sampled ecosystems. [55]
In Lebanon, more than 450 outcrops of Lower Cretaceous amber were discovered by Dany Azar, [56] a Lebanese paleontologist and entomologist. Among these outcrops, 20 have yielded biological inclusions comprising the oldest representatives of several recent families of terrestrial arthropods. Even older Jurassic amber has been found recently in Lebanon as well. Many remarkable insects and spiders were recently discovered in the amber of Jordan including the oldest zorapterans, clerid beetles, umenocoleid roaches, and achiliid planthoppers. [55]
Burmese amber from the Hukawng Valley in northern Myanmar is the only commercially exploited Cretaceous amber. Uranium–lead dating of zircon crystals associated with the deposit have given an estimated depositional age of approximately 99 million years ago. Over 1,300 species have been described from the amber, with over 300 in 2019 alone.
Baltic amber is found as irregular nodules in marine glauconitic sand, known as blue earth, occurring in Upper Eocene strata of Sambia in Prussia. [23] It appears to have been partly derived from older Eocene deposits and it occurs also as a derivative phase in later formations, such as glacial drift. Relics of an abundant flora occur as inclusions trapped within the amber while the resin was yet fresh, suggesting relations with the flora of eastern Asia and the southern part of North America. Heinrich Göppert named the common amber-yielding pine of the Baltic forests Pinites succiniter, but as the wood does not seem to differ from that of the existing genus it has been also called Pinus succinifera. It is improbable that the production of amber was limited to a single species; and indeed a large number of conifers belonging to different genera are represented in the amber-flora. [33]
Part of a series on |
Paleontology |
---|
Paleontology Portal Category |
Amber is a unique preservational mode, preserving otherwise unfossilizable parts of organisms; as such it is helpful in the reconstruction of ecosystems as well as organisms; [57] the chemical composition of the resin, however, is of limited utility in reconstructing the phylogenetic affinity of the resin producer. [1] Amber sometimes contains animals or plant matter that became caught in the resin as it was secreted. Insects, spiders and even their webs, annelids, frogs, [58] crustaceans, bacteria and amoebae, [59] marine microfossils, [60] wood, flowers and fruit, hair, feathers [3] and other small organisms have been recovered in Cretaceous ambers (deposited c. 130 million years ago). [1] There is even an ammonite Puzosia (Bhimaites) and marine gastropods found in Burmese amber. [61]
The preservation of prehistoric organisms in amber forms a key plot point in Michael Crichton's 1990 novel Jurassic Park and the 1993 movie adaptation by Steven Spielberg. [62] In the story, scientists are able to extract the preserved blood of dinosaurs from prehistoric mosquitoes trapped in amber, from which they genetically clone living dinosaurs. Scientifically this is as yet impossible, since no amber with fossilized mosquitoes has ever yielded preserved blood. [63] Amber is, however, conducive to preserving DNA, since it dehydrates and thus stabilizes organisms trapped inside. One projection in 1999 estimated that DNA trapped in amber could last up to 100 million years, far beyond most estimates of around 1 million years in the most ideal conditions, [64] although a later 2013 study was unable to extract DNA from insects trapped in much more recent Holocene copal. [65] In 1938, 12-year-old David Attenborough (brother of Richard who played John Hammond in Jurassic Park) was given a piece of amber containing prehistoric creatures from his adoptive sister; it would be the focus of his 2004 BBC documentary The Amber Time Machine. [66]
Amber has been used since prehistory (Solutrean) in the manufacture of jewelry and ornaments, and also in folk medicine.
Amber has been used as jewelry since the Stone Age, from 13,000 years ago. [1] Amber ornaments have been found in Mycenaean tombs and elsewhere across Europe. [67] To this day it is used in the manufacture of smoking and glassblowing mouthpieces. [68] [69] Amber's place in culture and tradition lends it a tourism value; Palanga Amber Museum is dedicated to the fossilized resin. [70]
Amber has long been used in folk medicine for its purported healing properties. [71] Amber and extracts were used from the time of Hippocrates in ancient Greece for a wide variety of treatments through the Middle Ages and up until the early twentieth century. [72] Traditional Chinese medicine uses amber to "tranquilize the mind". [73]
Amber necklaces are a traditional European remedy for colic or teething pain with purported analgesic properties of succinic acid, although there is no evidence that this is an effective remedy or delivery method. [71] [74] [75] The American Academy of Pediatrics and the FDA have warned strongly against their use, as they present both a choking and a strangulation hazard. [74] [76]
In ancient China, it was customary to burn amber during large festivities. If amber is heated under the right conditions, oil of amber is produced, and in past times this was combined carefully with nitric acid to create "artificial musk" – a resin with a peculiar musky odor. [77] Although when burned, amber does give off a characteristic "pinewood" fragrance, modern products, such as perfume, do not normally use actual amber because fossilized amber produces very little scent. In perfumery, scents referred to as "amber" are often created and patented [78] [79] to emulate the opulent golden warmth of the fossil. [80]
The scent of amber was originally derived from emulating the scent of ambergris and/or the plant resin labdanum, but since sperm whales are endangered, the scent of amber is now largely derived from labdanum. [81] The term "amber" is loosely used to describe a scent that is warm, musky, rich and honey-like, and also somewhat earthy. Benzoin is usually part of the recipe. Vanilla and cloves are sometimes used to enhance the aroma. "Amber" perfumes may be created using combinations of labdanum, benzoin resin, copal (a type of tree resin used in incense manufacture), vanilla, Dammara resin and/or synthetic materials. [77]
In Arab Muslim tradition, popular scents include amber, jasmine, musk and oud (agarwood). [82]
Young resins used as imitations: [83]
Plastics used as imitations: [84]
Ambergris, ambergrease, or grey amber is a solid, waxy, flammable substance of a dull grey or blackish colour produced in the digestive system of sperm whales. Freshly produced ambergris has a marine, fecal odor. It acquires a sweet, earthy scent as it ages, commonly likened to the fragrance of isopropyl alcohol without the vaporous chemical astringency.
A resin is a solid or highly viscous liquid that can be converted into a polymer. Resins may be biological or synthetic in origin, but are typically harvested from plants. Resins are mixtures of organic compounds, and predominantly terpenes. Well known resins include amber, hashish, frankincense, myrrh and the animal-derived resin, shellac. Resins are commonly used in varnishes, adhesives, food additives, incenses and perfumes.
Copal is a tree resin, particularly the aromatic resins from the copal tree Protium copal (Burseraceae) used by the cultures of pre-Columbian Mesoamerica as ceremonially burned incense and for other purposes. More generally, copal includes resinous substances in an intermediate stage of polymerization and hardening between "gummier" resins and amber. Copal that is partly mineralized is known as copaline.
George O. Poinar Jr. is an American entomologist and writer. He is known for popularizing the idea of extracting DNA from insects fossilized in amber, an idea which received widespread attention when adapted by Michael Crichton for the book and movie Jurassic Park.
Hymenaea protera is an extinct prehistoric leguminous tree, the probable ancestor of present-day Hymenaea species. Most neotropical ambers come from its fossilized resin, including the famous Dominican amber.
Baltic amber or succinite is amber from the Baltic region, home of its largest known deposits. It was produced sometime during the Eocene epoch, but exactly when is controversial. It has been estimated that this forested region provided the resin for more than 100,000 tons of amber. Today, more than 90% of the world's amber comes from Kaliningrad Oblast of Russia. It is a major source of income for the region; the local Kaliningrad Amber Combine extracted 250 tonnes of it in 2014 and 400 tonnes in 2015. Baltic amber is also found in Poland, as well as the Baltic states.
Roystonea palaea is an extinct species of palm known from fossil flowers found in the early Miocene Burdigalian stage Dominican amber deposits on the island of Hispaniola. The species is known from a single staminate flower and a single pistillate flower both preserved in the same piece of amber. The amber specimen bearing the holotype and paratype is currently deposited in the collections of the Oregon State University in Corvallis, Oregon, as number "Sd–9–101", where it was studied and described by George Poinar. Poinar published his 2002 type description for R. palaea in the Botanical Journal of the Linnean Society, Volume 139. The species' second name is taken from the Greek word palaios meaning "ancient". The amber specimen bearing the flowers was excavated from the La Toca mine northeast of Santiago de los Caballeros, Dominican Republic.
Archaeomarasmius is an extinct genus of gilled fungus in the Agaricales family Tricholomataceae, containing the single species Archaeomarasmius leggetti. It is known from two fruit bodies recovered from amber, one consisting of a complete cap with a broken stem, the other consisting of a fragment of a cap. The cap has a diameter ranging from 3.2 to 6 mm, while the stem is 0.5 mm (0.02 in) thick. Spores were also recovered from the amber, and are broadly ellipsoid to egg-shaped, measuring roughly 7.3 by 4.7 μm. The species, which resembles the extant genera Marasmius and Marasmiellus, is inferred to have been saprobic on plant litter or other forest debris.
Micropalaeosoma balticus was reported as an extinct, fossil turbellarian flatworm known from Baltic amber of Kaliningrad, Russia, that lived approximately 40 million years ago. It measured approximately 1.5 mm in length. It was considered the oldest and most complete free-living flatworm body fossil. However, much older flatworm fossils have been reported and it has been re-interpreted as a pseudo-inclusion.
The La Toca Formation is a geologic formation in the northern and eastern part of the Dominican Republic. The formation, predominantly an alternating sequence of marls and turbiditic sandstones, breccias and conglomerates, is renowned for the preservation of insects and other arthropods in amber, known as Dominican amber. The formation is dated to the Burdigalian to Langhian stages of the Miocene period.
Prosisyrina is an extinct genus of lacewing in the neuropteran family Sisyridae. The genus contains two described species, Prosisyrina sphinga and Prosisyrina sukachevae. Prosisyrina is known from a group of Late Cretaceous fossils which were found in Asia.
Baikuris is an extinct genus of ant in the Formicidae subfamily Sphecomyrminae, and is currently placed in the tribe Sphecomyrmini. The genus contains four described species: the type species Baikuris mandibularis, along with Baikuris casei, Baikuris maximus, Baikuris mirabilis, B. ocellantis.
Dlusskyidris is an extinct genus of ant in the Formicidae subfamily Sphecomyrminae, and is one of the five genera placed in the tribe Sphecomyrmini. The genus contains a single described species, Dlusskyidris zherichini, and is known from three Late Cretaceous fossils which have been found in northern Russia.
New Jersey Amber, sometimes called Raritan amber, is amber found in the Raritan and Magothy Formations of the Central Atlantic (Eastern) coast of the United States. It is dated to the Late Cretaceous, Turonian age, based on pollen analysis of the host formations. It has been known since the 19th century, with several of the old clay-pit sites now producing many specimens for study. It has yielded a number of organism fossils, including fungi, plants, tardigrades, insects and feathers. The first identified Cretaceous age ant was described from a fossil found in New Jersey in 1966.
Discoscapa apicula is an extinct species of crabronid wasp, formerly considered one of the two oldest-known species of bees. The species was described from an amber inclusion in Burmese Amber in 2020 by George Poinar Jr., a zoologist at Oregon State University. The fossil was found in a mine in the Hukawng Valley of northern Myanmar and is believed to date from the Cretaceous Period, 100 million years ago, the same age as Melittosphex burmensis, likewise previously considered the oldest known bee species; as it comes from the same amber deposit, these two specimens are considered to be the same approximate age. More recent research has concluded that D. apicula is a wasp belonging to the subfamily Crabroninae, placed in its own tribe, Discoscapini.
Lebanese amber is fossilized resin found in Lebanon and its surroundings. It dates back approximately 130-125 million years to the Barremian of the Early Cretaceous. It formed on what was then the northern coast of Gondwana, believed to be a tropical or subtropical zone in a temperate or hot climate. It is the oldest source of amber with a significant number of inclusions. Up to 300 sources of Lebanese amber have been recovered and 17 of them are important sources of organic inclusions, which are the oldest of their kind. The inclusions help to document Cretaceous fauna and flora.
Mesophyletidae is an extinct family of weevils known from a number of genera preserved in Cretaceous amber. The family was first described as a subfamily in the extant family Caridae, and subsequently raised to family status in 2018.
The Prussian Formation, previously known as the Amber Formation, is a geologic formation in Prussia, today mostly Kaliningrad Oblast that dates to the Eocene. It holds 90% of the world's amber supply and Baltic amber is found exclusively in the Prussian Formation.
Charentese amber is a type of amber that is found in sediments in the Charente-Maritime area of France. It dates to the late Albian to early Cenomanian stages of the mid-Cretaceous, around 100 million years ago. Charentese amber has been known since the early 19th century and was originally referred to as succin, succinic resin, or retinasphalt. The amber is known for its high quality and preservation of inclusions, such as insects, plant debris and other organisms. It is a valuable resource for paleontologists and other scientists studying the biodiversity of ancient ecosystems. The amber is often, but not always, opaque, requiring the usage of X-ray microtomography in order to observe specimens.
{{cite news}}
: CS1 maint: multiple names: authors list (link)With more than a quarter of a million pieces, this is thought to be the world's largest collection of amber