Inclusion (mineral)

Last updated
Dark inclusions of aegerine in light-green apatite Apatite-Aegirine-64416.jpg
Dark inclusions of aegerine in light-green apatite
Sketch showing different shapes of inclusions Inclusions2-1.jpg
Sketch showing different shapes of inclusions

In mineralogy, an inclusion is any material that is trapped inside a mineral during its formation. In gemology, an inclusion is a characteristic enclosed within a gemstone, or reaching its surface from the interior. [1]

Contents

According to Hutton's law of inclusions, fragments included in a host rock are older than the host rock itself. [2] [3]

Mineralogy

Inclusions are usually other minerals or rocks, but may also be water, gas or petroleum. Liquid or vapor inclusions are known as fluid inclusions. In the case of amber it is possible to find insects and plants as inclusions.

The analysis of atmospheric gas bubbles as inclusions in ice cores is an important tool in the study of climate change. [4]

A xenolith is a pre-existing rock which has been picked up by a lava flow. Melt inclusions form when bits of melt become trapped inside crystals as they form in the melt.

Gemology

An insect encased in amber, has gas bubbles protruding from its thorax and head. Dominican Amber housing an Insect.jpg
An insect encased in amber, has gas bubbles protruding from its thorax and head.
The term three phase relates to the three phases of matter, solid, liquid, and gas. This is a three phase inclusion in rock crystal quartz. The solid is a black material that is of bituminous origin. The liquid encased is petroleum, and the gas bubble is methane. Three Phase in Rock Crystal Quartz, Pakistan.jpg
The term three phase relates to the three phases of matter, solid, liquid, and gas. This is a three phase inclusion in rock crystal quartz. The solid is a black material that is of bituminous origin. The liquid encased is petroleum, and the gas bubble is methane.

Inclusions are one of the most important factors when it comes to gem valuation. In many gemstones, such as diamonds, inclusions affect the clarity of the gem, diminishing the value. In some gems, however, such as star sapphires, the inclusion actually increases the value of the gem. [5]

Many colored gemstones are expected to have inclusions, and the inclusions do not greatly affect the stone's value. Colored gemstones are categorized into three types as follows: [2]

Metallurgy

The term "inclusion" is also used in the context of metallurgy and metals processing. [6] [7] During the melt stage of processing particles such as oxides can enter or form in the liquid metal which are subsequently trapped when the melt solidifies. The term is usually used negatively such as when the particle could act as a fatigue crack nucleator or as an area of high stress intensity. [8] [9]

See also

Related Research Articles

<span class="mw-page-title-main">Corundum</span> Oxide mineral

Corundum is a crystalline form of aluminium oxide typically containing traces of iron, titanium, vanadium, and chromium. It is a rock-forming mineral. It is a naturally transparent material, but can have different colors depending on the presence of transition metal impurities in its crystalline structure. Corundum has two primary gem varieties: ruby and sapphire. Rubies are red due to the presence of chromium, and sapphires exhibit a range of colors depending on what transition metal is present. A rare type of sapphire, padparadscha sapphire, is pink-orange.

<span class="mw-page-title-main">Diamond</span> Form of carbon

Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, but diamond is metastable and converts to it at a negligible rate under those conditions. Diamond has the highest hardness and thermal conductivity of any natural material, properties that are used in major industrial applications such as cutting and polishing tools. They are also the reason that diamond anvil cells can subject materials to pressures found deep in the Earth.

<span class="mw-page-title-main">Emerald</span> Green gemstone, a beryl variety

Emerald is a gemstone and a variety of the mineral beryl (Be3Al2(SiO3)6) colored green by trace amounts of chromium or sometimes vanadium. Beryl has a hardness of 7.5–8 on the Mohs scale. Most emeralds have lots of material trapped inside during the gem's formation, so their toughness (resistance to breakage) is classified as generally poor. Emerald is a cyclosilicate.

<span class="mw-page-title-main">Gemstone</span> Piece of mineral crystal used to make jewelry

A gemstone is a piece of mineral crystal which, when cut or polished, is used to make jewelry or other adornments. However, certain rocks and occasionally organic materials that are not minerals are also used for jewelry and are therefore often considered to be gemstones as well. Most gemstones are hard, but some soft minerals are used in jewelry because of their luster or other physical properties that have aesthetic value. Rarity and notoriety are other characteristics that lend value to gemstones.

<span class="mw-page-title-main">Spinel</span> Mineral or gemstone

Spinel is the magnesium/aluminium member of the larger spinel group of minerals. It has the formula MgAl
2
O
4
in the cubic crystal system. Its name comes from the Latin word spinella, a diminutive form of spine, in reference to its pointed crystals.

<span class="mw-page-title-main">Sapphire</span> Gem variety of corundum

Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide (α-Al2O3) with trace amounts of elements such as iron, titanium, cobalt, lead, chromium, vanadium, magnesium, boron, and silicon. The name sapphire is derived via the Latin sapphirus from the Greek sappheiros (σάπφειρος), which referred to lapis lazuli. It is typically blue, but natural "fancy" sapphires also occur in yellow, purple, orange, and green colors; "parti sapphires" show two or more colors. Red corundum stones also occur, but are called rubies rather than sapphires. Pink-colored corundum may be classified either as ruby or sapphire depending on locale. Commonly, natural sapphires are cut and polished into gemstones and worn in jewelry. They also may be created synthetically in laboratories for industrial or decorative purposes in large crystal boules. Because of the remarkable hardness of sapphires – 9 on the Mohs scale (the third hardest mineral, after diamond at 10 and moissanite at 9.5) – sapphires are also used in some non-ornamental applications, such as infrared optical components, high-durability windows, wristwatch crystals and movement bearings, and very thin electronic wafers, which are used as the insulating substrates of special-purpose solid-state electronics such as integrated circuits and GaN-based blue LEDs. Sapphire is the birthstone for September and the gem of the 45th anniversary. A sapphire jubilee occurs after 65 years.

<span class="mw-page-title-main">Ruby</span> Variety of corundum, mineral, gemstone

A ruby is a pinkish red to blood-red colored gemstone, a variety of the mineral corundum. Ruby is one of the most popular traditional jewelry gems and is very durable. Other varieties of gem-quality corundum are called sapphires. Ruby is one of the traditional cardinal gems, alongside amethyst, sapphire, emerald, and diamond. The word ruby comes from ruber, Latin for red. The color of a ruby is due to the element chromium.

<span class="mw-page-title-main">Lapidary</span> Shaping of gemstones for jewelry

Lapidary is the practice of shaping stone, minerals, or gemstones into decorative items such as cabochons, engraved gems, and faceted designs. A person who practices lapidary is known as a lapidarist. A lapidarist uses the lapidary techniques of cutting, grinding, and polishing. Hardstone carving requires specialized carving techniques.

Lustre is the way light interacts with the surface of a crystal, rock, or mineral. The word traces its origins back to the Latin lux, meaning "light", and generally implies radiance, gloss, or brilliance.

<span class="mw-page-title-main">Gemology</span> Science dealing with natural and artificial gemstone materials

Gemology or gemmology is the science dealing with natural and artificial gemstone materials. It is a geoscience and a branch of mineralogy. Some jewelers are academically trained gemologists and are qualified to identify and evaluate gems.

<span class="mw-page-title-main">Placer deposit</span>

In geology, a placer deposit or placer is an accumulation of valuable minerals formed by gravity separation from a specific source rock during sedimentary processes. The name is from the Spanish word placer, meaning "alluvial sand". Placer mining is an important source of gold, and was the main technique used in the early years of many gold rushes, including the California Gold Rush. Types of placer deposits include alluvium, eluvium, beach placers, aeolian placers and paleo-placers.

<span class="mw-page-title-main">Diamond simulant</span> Diamond-like object which is not a diamond

A diamond simulant, diamond imitation or imitation diamond is an object or material with gemological characteristics similar to those of a diamond. Simulants are distinct from synthetic diamonds, which are actual diamonds exhibiting the same material properties as natural diamonds. Enhanced diamonds are also excluded from this definition. A diamond simulant may be artificial, natural, or in some cases a combination thereof. While their material properties depart markedly from those of diamond, simulants have certain desired characteristics—such as dispersion and hardness—which lend themselves to imitation. Trained gemologists with appropriate equipment are able to distinguish natural and synthetic diamonds from all diamond simulants, primarily by visual inspection.

<span class="mw-page-title-main">Gemological Institute of America</span> Research institute in Carlsbad, California

The Gemological Institute of America (GIA) is a nonprofit institute based in Carlsbad, California. It is dedicated to research and education in the field of gemology and the jewelry arts. Founded in 1931, GIA's mission is to protect buyers and sellers of gemstones by setting and maintaining the standards used to evaluate gemstone quality. The institute does so through research, gem identification and diamond grading services and a variety of educational programs. Through its library and subject experts, GIA acts as a resource of gem and jewelry information for the trade, the public and media outlets.

In the mining industry or extractive metallurgy, beneficiation is any process that improves (benefits) the economic value of the ore by removing the gangue minerals, which results in a higher grade product and a waste stream (tailings). There are many different types of beneficiation, with each step furthering the concentration of the original ore.

<span class="mw-page-title-main">Verneuil method</span> Manufacturing process of synthetic gemstones

The Verneuil method, also called flame fusion, was the first commercially successful method of manufacturing synthetic gemstones, developed in the late 1883 by the French chemist Auguste Verneuil. It is primarily used to produce the ruby, sapphire and padparadscha varieties of corundum, as well as the diamond simulants rutile, strontium titanate and spinel. The principle of the process involves melting a finely powdered substance using an oxyhydrogen flame, and crystallising the melted droplets into a boule. The process is considered to be the founding step of modern industrial crystal growth technology, and remains in wide use to this day.

<span class="mw-page-title-main">Gemstone industry in Greenland</span>

Gemstones have been found in Greenland, including diamond, ruby, sapphire, kornerupine, tugtupite, lapis lazuli, amazonite, peridot, quartz, spinel, topaz, and tourmaline. Most of Greenland's ruby and sapphire occurrences are located near the village of Fiskenaesset/Qeqertarsuatsiaat on the southwest coast.

A casting defect is an undesired irregularity in a metal casting process. Some defects can be tolerated while others can be repaired, otherwise they must be eliminated. They are broken down into five main categories: gas porosity, shrinkage defects, mould material defects, pouring metal defects, and metallurgical defects.

The geochemistry of carbon is the study of the transformations involving the element carbon within the systems of the Earth. To a large extent this study is organic geochemistry, but it also includes the very important carbon dioxide. Carbon is transformed by life, and moves between the major phases of the Earth, including the water bodies, atmosphere, and the rocky parts. Carbon is important in the formation of organic mineral deposits, such as coal, petroleum or natural gas. Most carbon is cycled through the atmosphere into living organisms and then respirated back into the atmosphere. However an important part of the carbon cycle involves the trapping of living matter into sediments. The carbon then becomes part of a sedimentary rock when lithification happens. Human technology or natural processes such as weathering, or underground life or water can return the carbon from sedimentary rocks to the atmosphere. From that point it can be transformed in the rock cycle into metamorphic rocks, or melted into igneous rocks. Carbon can return to the surface of the Earth by volcanoes or via uplift in tectonic processes. Carbon is returned to the atmosphere via volcanic gases. Carbon undergoes transformation in the mantle under pressure to diamond and other minerals, and also exists in the Earth's outer core in solution with iron, and may also be present in the inner core.

References

  1. "Types of Mineral Inclusions". Geology Page. 2017-06-03. Retrieved 2020-08-08.
  2. 1 2 "What Are Inclusions?" . Retrieved 2020-08-08.
  3. "Geologic Principles". imnh.iri.isu.edu. Archived from the original on 2021-10-17. Retrieved 2020-08-08.
  4. Barnola, J.-M; Raynaud, D.; Lorius, C.; Barkov, N.I. (2003). "Historical Carbon Dioxide Record from the Vostok Ice Core". cdiac.ess-dive.lbl.gov. Retrieved 2020-08-08.
  5. "Types of Mineral Inclusions with Photos". 2017-01-20. Retrieved 2020-08-08.
  6. Petersen, Christian (August 2, 2020). "What Are Inclusions in Steel?". wiseGEEK. Retrieved 2020-08-08.
  7. "The Origins of Oxide Inclusions :: Total Materia Article". www.totalmateria.com. Retrieved 2020-08-08.
  8. Ashby, M. F. (2019). Materials: engineering, science, processing and design. Department of Engineering, University of Cambridge, UK. Hugh Shercliff, David Cebon (4th ed.). Oxford: Butterworth-Heinemann. ISBN   978-0-08-102376-1. OCLC   852806045.
  9. "Inclusion Metallurgy". Department Metallurgy - Metallurgie Department. Retrieved 2020-08-08.