Rock (geology)

Last updated

The Grand Canyon is an incision through a number of layers of sedimentary rocks. Grand Canyon.jpg
The Grand Canyon is an incision through a number of layers of sedimentary rocks.

A rock is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its chemical composition and the way in which it is formed. Rocks are usually grouped into three main groups: igneous rocks, metamorphic rocks and sedimentary rocks. Rocks form the Earth's outer solid layer, the crust.

Contents

Igneous rocks are formed when magma cools in the Earth's crust, or lava cools on the ground surface or the seabed. The metamorphic rocks are formed when existing rocks are subjected to such large pressures and temperatures that they are transformed—something that occurs, for example, when continental plates collide. The sedimentary rocks are formed by diagenesis or lithification of sediments, which in turn are formed by the weathering, transport, and deposition of existing rocks. [1]

The scientific study of rocks is called petrology, which is an essential component of geology. [2]

Classification

Rock outcrop along a mountain creek near Orosi, Costa Rica. DirkvdM rocks.jpg
Rock outcrop along a mountain creek near Orosí, Costa Rica.

Rocks are composed of grains of minerals, which are homogeneous solids formed from a chemical compound arranged in an orderly manner. [3] [ page needed ] The aggregate minerals forming the rock are held together by chemical bonds. The types and abundance of minerals in a rock are determined by the manner in which it was formed.

Most rocks contain silicate minerals, compounds that include silicon oxide tetrahedra in their crystal lattice, and account for about one-third of all known mineral species and about 95% of the earth's crust. [4] The proportion of silica in rocks and minerals is a major factor in determining their names and properties. [5]

Rocks are classified according to characteristics such as mineral and chemical composition, permeability, texture of the constituent particles, and particle size. These physical properties are the result of the processes that formed the rocks. [6] Over the course of time, rocks can transform from one type into another, as described by a geological model called the rock cycle. This transformation produces three general classes of rock: igneous, sedimentary and metamorphic.

Those three classes are subdivided into many groups. There are, however, no hard-and-fast boundaries between allied rocks. By increase or decrease in the proportions of their minerals, they pass through gradations from one to the other; the distinctive structures of one kind of rock may thus be traced gradually merging into those of another. Hence the definitions adopted in rock names simply correspond to selected points in a continuously graduated series. [7]

Igneous rock

Sample of igneous gabbro GabbroRockCreek1.jpg
Sample of igneous gabbro

Igneous rock (derived from the Latin word igneus, meaning of fire, from ignis meaning fire) is formed through the cooling and solidification of magma or lava. This magma may be derived from partial melts of pre-existing rocks in either a planet's mantle or crust. Typically, the melting of rocks is caused by one or more of three processes: an increase in temperature, a decrease in pressure, or a change in composition.

Igneous rocks are divided into two main categories:

The chemical abundance and the rate of cooling of magma typically forms a sequence known as Bowen's reaction series. Most major igneous rocks are found along this scale. [5]

About 65% of the Earth's crust by volume consists of igneous rocks, making it the most plentiful category. Of these, 66% are basalt and gabbro, 16% are granite, and 17% granodiorite and diorite. Only 0.6% are syenite and 0.3% are ultramafic. The oceanic crust is 99% basalt, which is an igneous rock of mafic composition. Granite and similar rocks, known as granitoids, dominate the continental crust. [8] [9]

Sedimentary rock

Sedimentary sandstone with iron oxide bands SandstoneUSGOV.jpg
Sedimentary sandstone with iron oxide bands

Sedimentary rocks are formed at the earth's surface by the accumulation and cementation of fragments of earlier rocks, minerals, and organisms [10] or as chemical precipitates and organic growths in water (sedimentation). This process causes clastic sediments (pieces of rock) or organic particles (detritus) to settle and accumulate, or for minerals to chemically precipitate (evaporite) from a solution. The particulate matter then undergoes compaction and cementation at moderate temperatures and pressures (diagenesis).

Before being deposited, sediments are formed by weathering of earlier rocks by erosion in a source area and then transported to the place of deposition by water, wind, ice, mass movement or glaciers (agents of denudation). [6] About 7.9% of the crust by volume is composed of sedimentary rocks, with 82% of those being shales, while the remainder consists of limestone (6%), sandstone and arkoses (12%). [9] Sedimentary rocks often contain fossils. Sedimentary rocks form under the influence of gravity and typically are deposited in horizontal or near horizontal layers or strata, and may be referred to as stratified rocks. [11]

Metamorphic rock

Metamorphic banded gneiss Skagit-gneiss-Cascades.jpg
Metamorphic banded gneiss

Metamorphic rocks are formed by subjecting any rock type—sedimentary rock, igneous rock or another older metamorphic rock—to different temperature and pressure conditions than those in which the original rock was formed. This process is called metamorphism, meaning to "change in form". The result is a profound change in physical properties and chemistry of the stone. The original rock, known as the protolith, transforms into other mineral types or other forms of the same minerals, by recrystallization. [6] The temperatures and pressures required for this process are always higher than those found at the Earth's surface: temperatures greater than 150 to 200 °C and pressures of 1500 bars. [12] Metamorphic rocks compose 27.4% of the crust by volume. [9]

The three major classes of metamorphic rock are based upon the formation mechanism. An intrusion of magma that heats the surrounding rock causes contact metamorphism—a temperature-dominated transformation. Pressure metamorphism occurs when sediments are buried deep under the ground; pressure is dominant, and temperature plays a smaller role. This is termed burial metamorphism, and it can result in rocks such as jade. Where both heat and pressure play a role, the mechanism is termed regional metamorphism. This is typically found in mountain-building regions. [5]

Depending on the structure, metamorphic rocks are divided into two general categories. Those that possess a texture are referred to as foliated; the remainders are termed non-foliated. The name of the rock is then determined based on the types of minerals present. Schists are foliated rocks that are primarily composed of lamellar minerals such as micas. A gneiss has visible bands of differing lightness, with a common example being the granite gneiss. Other varieties of foliated rock include slates, phyllites, and mylonite. Familiar examples of non-foliated metamorphic rocks include marble, soapstone, and serpentine. This branch contains quartzite—a metamorphosed form of sandstone—and hornfels. [5]

Human use

Ceremonial cairn of rocks, an ovoo, from Mongolia TallOvoo.JPG
Ceremonial cairn of rocks, an ovoo, from Mongolia
Mi Vida uranium mine near Moab, Utah UraniumMineUtah.JPG
Mi Vida uranium mine near Moab, Utah
Raised garden bed with natural stones Hochbeet aus Naturstein.jpg
Raised garden bed with natural stones

The use of rock has had a huge impact on the cultural and technological development of the human race. Rock has been used by humans and other hominids for at least 2.5 million years. [13] Lithic technology marks some of the oldest and continuously used technologies. The mining of rock for its metal content has been one of the most important factors of human advancement, and has progressed at different rates in different places, in part because of the kind of metals available from the rock of a region.

Mining

Mining is the extraction of valuable minerals or other geological materials from the earth, from an ore body, vein or seam. [14] The term also includes the removal of soil. Materials recovered by mining include base metals, precious metals, iron, uranium, coal, diamonds, limestone, oil shale, rock salt, potash, construction aggregate and dimension stone. Mining is required to obtain any material that cannot be grown through agricultural processes, or created artificially in a laboratory or factory. Mining in a wider sense comprises extraction of any resource (e.g. petroleum, natural gas, salt or even water) from the earth. [15]

Mining of rock and metals has been done since prehistoric times. Modern mining processes involve prospecting for mineral deposits, analysis of the profit potential of a proposed mine, extraction of the desired materials, and finally reclamation of the land to prepare it for other uses once mining ceases. [16]

Mining processes may create negative impacts on the environment both during the mining operations and for years after mining has ceased. These potential impacts have led to most of the world's nations adopting regulations to manage negative effects of mining operations. [17]

See also

Related Research Articles

Gneiss A common high-grade metamorphic rock

Gneiss is a common and widely distributed type of metamorphic rock. Gneiss is formed by high temperature and high-pressure metamorphic processes acting on formations composed of igneous or sedimentary rocks. Orthogneiss is gneiss derived from igneous rock. Paragneiss is gneiss derived from sedimentary rock. Gneiss forms at higher temperatures and pressures than schist. Gneiss nearly always shows a banded texture characterized by alternating darker and lighter colored bands and without a distinct foliation.

Schist Medium grade metamorphic rock with lamellar grain

Schist is a medium-grade metamorphic rock formed from mudstone or shale. Schist has medium to large, flat, sheet-like grains in a preferred orientation. It is defined by having more than 50% platy and elongated minerals, often finely interleaved with quartz and feldspar. These lamellar minerals include micas, chlorite, talc, hornblende, graphite, and others. Quartz often occurs in drawn-out grains to such an extent that a particular form called quartz schist is produced. Schist is often garnetiferous. Schist forms at a higher temperature and has larger grains than phyllite. Geological foliation with medium to large grained flakes in a preferred sheetlike orientation is called schistosity.

Metamorphic rock Rock which was subjected to heat and pressure causing profound physical or chemical change

Metamorphic rocks arise from the transformation of existing rock types, in a process called metamorphism, which means "change in form". The original rock (protolith) is subjected to heat and pressure, causing profound physical or chemical change. The protolith may be a sedimentary, igneous, or existing metamorphic rock.

Metamorphism The change of minerals in pre-existing rocks without melting into liquid magma

Metamorphism is the change of minerals or geologic texture in pre-existing rocks (protoliths), without the protolith melting into liquid magma. The change occurs primarily due to heat, pressure, and the introduction of chemically active fluids. The chemical components and crystal structures of the minerals making up the rock may change even though the rock remains a solid. Changes at or just beneath Earth's surface due to weathering or diagenesis are not classified as metamorphism. Metamorphism typically occurs between diagenesis, and melting (~850°C).

Migmatite A mixture of metamorphic rock and igneous rock

Migmatite is a composite rock found in medium and high-grade metamorphic environments. It consists of two or more constituents often layered repetitively; one layer was formerly paleosome, a metamorphic rock that was reconstituted subsequently by partial melting; the alternate layer has a pegmatitic, aplitic, granitic or generally plutonic appearance. Commonly, migmatites occur below deformed metamorphic rocks that represent the base of eroded mountain chains, commonly within Precambrian cratonic blocks,

Petrology The branch of geology that studies the origin, composition, distribution and structure of rocks

Petrology is the branch of geology that studies rocks and the conditions under which they form. Petrology has three subdivisions: igneous, metamorphic, and sedimentary petrology. Igneous and metamorphic petrology are commonly taught together because they both contain heavy use of chemistry, chemical methods, and phase diagrams. Sedimentary petrology is, on the other hand, commonly taught together with stratigraphy because it deals with the processes that form sedimentary rock.

Skarn Hard, coarse-grained, hydrothermally altered metamorphic rocks

Skarns or tactites are hard, coarse-grained metamorphic rocks that form by a process called metasomatism. Skarns tend to be rich in calcium-magnesium-iron-manganese-aluminium silicate minerals, which are also referred to as calc-silicate minerals. These minerals form as a result of alteration which occurs when hydrothermal fluids interact with a protolith of either igneous or sedimentary origin. In many cases, skarns are associated with the intrusion of a granitic pluton found in and around faults or shear zones that intrude into a carbonate layer composed of either dolomite or limestone. Skarns can form by regional, or contact metamorphism and therefore form in relatively high temperature environments. The hydrothermal fluids associated with the metasomatic processes can originate from either magmatic, metamorphic, meteoric, marine, or even a mix of these. The resulting skarn may consist of a variety of different minerals which are highly dependent on the original composition of both the hydrothermal fluid and the original composition of the protolith.

Eclogite A dense, mafic metamorphic rock

Eclogite is a mafic metamorphic rock. Eclogite forms at pressures greater than those typical of the crust of the Earth. An unusually dense rock, eclogite can play an important role in driving convection within the solid Earth.

Formation of rocks how rocks are formed

The three main ways terrestrial rocks are formed:

Charnockite A type of granite containing orthopyroxene

Charnockite is applied to any orthopyroxene-bearing quartz-feldspar rock, formed at high temperature and pressure, commonly found in granulite facies metamorphic regions, as an end-member of the charnockite series.

Rock cycle Transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous

The rock cycle is a basic concept in geology that describes transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous. Each rock type is altered when it is forced out of its equilibrium conditions. For example, an igneous rock such as basalt may break down and dissolve when exposed to the atmosphere, or melt as it is subducted under a continent. Due to the driving forces of the rock cycle, plate tectonics and the water cycle, rocks do not remain in equilibrium and change as they encounter new environments. The rock cycle explains how the three rock types are related to each other, and how processes change from one type to another over time. This cyclical aspect makes rock change a geologic cycle and, on planets containing life, a biogeochemical cycle.

Ore genesis How the various types of mineral deposits form within the Earths crust.

Various theories of ore genesis explain how the various types of mineral deposits form within the Earth's crust. Ore-genesis theories vary depending on the mineral or commodity examined.

Rock microstructure includes the texture of a rock and the small scale rock structures. The words "texture" and "microstructure" are interchangeable, with the latter preferred in modern geological literature. However, texture is still acceptable because it is a useful means of identifying the origin of rocks, how they formed, and their appearance.

Foliation (geology) repetitive layering in metamorphic rocks

Foliation in geology refers to repetitive layering in metamorphic rocks. Each layer can be as thin as a sheet of paper, or over a meter in thickness. The word comes from the Latin folium, meaning "leaf", and refers to the sheet-like planar structure. It is caused by shearing forces, or differential pressure. The layers form parallel to the direction of the shear, or perpendicular to the direction of higher pressure. Nonfoliated metamorphic rocks are typically formed in the absence of significant differential pressure or shear. Foliation is common in rocks affected by the regional metamorphic compression typical of areas of mountain belt formation.

Zeolite facies describes the mineral assemblage resulting from the pressure and temperature conditions of low-grade metamorphism.

Fractional crystallization (geology) One of the main processes of magmatic differentiation

Fractional crystallization, or crystal fractionation, is one of the most important geochemical and physical processes operating within crust and mantle of a rocky planetary body, such as the Earth. It is important in the formation of igneous rocks because it is one of the main processes of magmatic differentiation. Fractional crystallization is also important in the formation of sedimentary evaporite rocks.

This glossary of geology is a list of definitions of terms and concepts relevant to geology, its sub-disciplines, and related fields. For other terms related to the Earth sciences, see Glossary of geography terms.

Igneous rock Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma or lava. The magma can be derived from partial melts of existing rocks in either a planet's mantle or crust. Typically, the melting is caused by one or more of three processes: an increase in temperature, a decrease in pressure, or a change in composition. Solidification into rock occurs either below the surface as intrusive rocks or on the surface as extrusive rocks. Igneous rock may form with crystallization to form granular, crystalline rocks, or without crystallization to form natural glasses. Igneous rocks occur in a wide range of geological settings: shields, platforms, orogens, basins, large igneous provinces, extended crust and oceanic crust.

Subduction zone metamorphism Changes of rock due to pressure and heat near a subduction zone

A subduction zone is a region of the earth's crust where one tectonic plate moves under another tectonic plate; oceanic crust gets recycled back into the mantle and continental crust gets created by the formation of arc magmas. Arc magmas account for more than 20% of terrestrially produced magmas and are produced by the dehydration of minerals within the subducting slab as it descends into the mantle and are accreted onto the base of the overriding continental plate. Subduction zones host a unique variety of rock types created by the high-pressure, low-temperature conditions a subducting slab encounters during its descent. The metamorphic conditions the slab passes through in this process creates and destroys water bearing (hydrous) mineral phases, releasing water into the mantle. This water lowers the melting point of mantle rock, initiating melting. Understanding the timing and conditions in which these dehydration reactions occur, is key to interpreting mantle melting, volcanic arc magmatism, and the formation of continental crust.

Pressure-temperature-time path

The Pressure-Temperature-time path is a record of the pressure and temperature (P-T) conditions that a rock experienced in a metamorphic cycle from burial and heating to uplift and exhumation to the surface. Metamorphism is a dynamic process which involves the changes in minerals and textures of the pre-existing rocks (protoliths) under different P-T conditions in solid state. The changes in pressures and temperatures with time experienced by the metamorphic rocks are often investigated by petrological methods, radiometric dating techniques and thermodynamic modeling.

References

  1. Tarbuck; Lutgens, s 194
  2. Harbaugh, John W.; Windley, Brian Frederick. "Geology". Encyclopædia Britannica. Retrieved 15 April 2019.
  3. Cipriani, Nicola (1996). The encyclopedia of rocks and minerals. New York: Barnes & Noble. ISBN   978-0-7607-0291-8.
  4. Heinen, Wouter; Oehler, John H. (1979). "Evolutionary Aspects of Biological Involvement in the Cycling of Silica". In Trudinger, P.A.; Swaine, D.J. (eds.). Biogeochemical Cycling of Mineral-Forming Elements. Amsterdam: Elsevier. p. 431. ISBN   9780080874623 . Retrieved 13 April 2020.
  5. 1 2 3 4 Wilson, James Robert (1995), A collector's guide to rock, mineral & fossil localities of Utah, Utah Geological Survey, pp. 1–22, ISBN   978-1-55791-336-4, archived from the original on 19 November 2016.
  6. 1 2 3 4 Blatt, Harvey; Tracy, Robert J. (1996). Petrology (2nd ed.). W.H. Freeman. ISBN   978-0-7167-2438-4.
  7. Wikisource-logo.svg One or more of the preceding sentences incorporates text from a publication now in the public domain : Flett, John Smith (1911). "Petrology". In Chisholm, Hugh (ed.). Encyclopædia Britannica . 21 (11th ed.). Cambridge University Press. p. 327.CS1 maint: ref=harv (link)
  8. Condie, Kent C. (2015). Plate Tectonics & Crustal Evolution (2nd ed.). New York: Pergamon. p. 68. ISBN   9781483100142 . Retrieved 13 April 2020.
  9. 1 2 3 Bucher, Kurt; Grapes, Rodney (2011), Petrogenesis of Metamorphic Rocks, Heidelberg: Springer, pp. 23–24, ISBN   978-3-540-74168-8, archived from the original on 19 November 2016.
  10. Gilluly, James (1959). Principles of Geology . W.H. Freeman.
  11. Monroe, James S.; Wicander, Reed (2008). The Changing Earth: Exploring Geology and Evolution (5th ed.). Belmont, CA: Brooks/Cole. p. 438. ISBN   9780495554806 . Retrieved 13 April 2020.
  12. Blatt, Harvey and Robert J. Tracy, Petrology, W.H.Freeman, 2nd ed., 1996, p. 355 ISBN   0-7167-2438-3
  13. William Haviland, Dana Walrath, Harald Prins, Bunny McBride, Evolution and Prehistory: The Human Challenge, p. 166
  14. Gajul, Shekhar (28 July 2018). "Underground Mining Equipment Market 2017 Global Key Players, Share, Challenges, Industry Size, Growth Opportunities & Forecast To 2021". Journalist Book.
  15. Botin, J.A., ed. (2009). Sustainable Management of Mining Operations. Denver, CO: Society for Mining, Metallurgy, and Exploration. ISBN   978-0-87335-267-3.
  16. Wilson, Arthur (1996). The Living Rock: The Story of Metals Since Earliest Times and Their Impact on Developing Civilization. Cambridge, England: Woodhead Publishing. ISBN   978-1-85573-301-5.
  17. Terrascope. "Environmental Risks of Mining". The Future of strategic Natural Resources. Cambridge, Massachusetts: Massachusetts Institute of Technology. Archived from the original on 20 September 2014. Retrieved 10 September 2014.