Cementation (geology)

Last updated
Calcite cement in an ooid-rich limestone; Carmel Formation, Jurassic of Utah CarmelOoids.jpg
Calcite cement in an ooid-rich limestone; Carmel Formation, Jurassic of Utah

A brief, easy-to-understand description of cementation is that minerals bond grains of sediment together by growing around them. This process is called cementation and is a part of the rock cycle.

Cementation involves ions carried in groundwater chemically precipitating to form new crystalline material between sedimentary grains. The new pore-filling minerals form "bridges" between original sediment grains, thereby binding them together. In this way, sand becomes sandstone, and gravel becomes conglomerate or breccia. Cementation occurs as part of the diagenesis or lithification of sediments. Cementation occurs primarily below the water table regardless of sedimentary grain sizes present. Large volumes of pore water must pass through sediment pores for new mineral cements to crystallize and so millions of years are generally required to complete the cementation process. Common mineral cements include calcite, quartz, and silica phases like cristobalite, iron oxides, and clay minerals; other mineral cements also occur.

Cementation is continuous in the groundwater zone, so much so that the term "zone of cementation" is sometimes used interchangeably. Cementation occurs in fissures or other openings of existing rocks and is a dynamic process more or less in equilibrium with a dissolution or dissolving process.

Cement found on the sea floor is commonly aragonite and can take different textural forms. These textural forms include pendant cement, meniscus cement, isopachous cement, needle cement, botryoidal cement, blocky cement, syntaxial rim cement, and coarse mosaic cement. The environment in which each of the cements is found depends on the pore space available. Cements that are found in phreatic zones include: isopachous, blocky, and syntaxial rim cements. As for calcite cementation, which occurs in meteoric realms (freshwater sources), the cement is produced by the dissolution of less stable aragonite and high-Mg calcite. (Boggs, 2011)

Classifying rocks while using the Folk classification depends on the matrix, which is either sparry (prominently composed of cement) or micritic (prominently composed of mud).

Types of carbonate cement

Beachrock is a type of carbonate beach sand that has been cemented together by a process called synsedimentary cementation. Beachrock may contain meniscus cements or pendant cements. As the water between the narrow spaces of grains drains from the beachrock, a small portion of it is held back by capillary forces, where meniscus cement will form. Pendant cements form on the bottom of grains where water droplets are held.

Hardgrounds are hard crusts of carbonate material that form on the bottom of the ocean floor, below the lowest tide level. Isopachous (which means equal thickness) cement forms in subaqueous conditions where the grains are completely surrounded by water (Boggs, 2006).

Carbonate cements can also be formed by biological organisms such as Sporosarcina pasteurii , which binds sand together given organic compounds and a calcium source (Chou et al., 2010).

Cementing has significant effects on the properties and stability of many soil materials. Cementation is not always easily identified and its effects cannot be easily determined quantitatively. It is known to contribute to clay tenderness and may be responsible for an apparent preconsolidation pressure. The filtration of iron compounds from a very sensitive clay from Labrador, Canada, resulted in a 30 t/m reduction in apparent preconsolidation pressure. [1] Coop and Airey (2003) show that for carbonate soils, cementation develops immediately after deposition and allows the soil to maintain a loose structure. Non-recognition of cementation has resulted in construction disputes. [2] For example, a land on a major Project is marked as glacier on contract drawings. It was so hard that it had to be detonated. The contractor claimed that the soil was cemented during excavation as it was formed due to the clay matrix as well as the gravel. The owner concluded that this was due to the weathering of the pebbles. Proper evaluation of the material before the award of the contract could have avoided the problem. Clay particles adhere to the surfaces of larger silt and sand particles, a process called clay bonding. Eventually, larger grains are embedded in a clay matrix and their influence on geotechnical behavior is limited. The clay confinement maintains a large void ratio even at high effective stresses, allowing the interparticle forces to spring up.

Related Research Articles

<span class="mw-page-title-main">Limestone</span> Type of sedimentary rock

Limestone is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of CaCO3. Limestone forms when these minerals precipitate out of water containing dissolved calcium. This can take place through both biological and nonbiological processes, though biological processes, such as the accumulation of corals and shells in the sea, have likely been more important for the last 540 million years. Limestone often contains fossils which provide scientists with information on ancient environments and on the evolution of life.

<span class="mw-page-title-main">Sandstone</span> Type of sedimentary rock

Sandstone is a clastic sedimentary rock composed mainly of sand-sized silicate grains, cemented together by another mineral. Sandstones comprise about 20–25% of all sedimentary rocks.

<span class="mw-page-title-main">Shale</span> Fine-grained, clastic sedimentary rock

Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2Si2O5(OH)4) and tiny fragments (silt-sized particles) of other minerals, especially quartz and calcite. Shale is characterized by its tendency to split into thin layers (laminae) less than one centimeter in thickness. This property is called fissility. Shale is the most common sedimentary rock.

<span class="mw-page-title-main">Sedimentary rock</span> Rock formed by the deposition and cementation of particles

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

<span class="mw-page-title-main">Marl</span> Lime-rich mud or mudstone which contains variable amounts of clays and silt

Marl is an earthy material rich in carbonate minerals, clays, and silt. When hardened into rock, this becomes marlstone. It is formed in marine or freshwater environments, often through the activities of algae.

<span class="mw-page-title-main">Sediment</span> Particulate solid matter that is deposited on the surface of land

Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand and silt can be carried in suspension in river water and on reaching the sea bed deposited by sedimentation; if buried, they may eventually become sandstone and siltstone through lithification.

<span class="mw-page-title-main">Aragonite</span> Calcium carbonate mineral

Aragonite is a carbonate mineral and one of the three most common naturally occurring crystal forms of calcium carbonate, the others being calcite and vaterite. It is formed by biological and physical processes, including precipitation from marine and freshwater environments.

<span class="mw-page-title-main">Concretion</span> Compact mass formed by precipitation of mineral cement between particles

A concretion is a hard, compact mass formed by the precipitation of mineral cement within the spaces between particles, and is found in sedimentary rock or soil. Concretions are often ovoid or spherical in shape, although irregular shapes also occur. The word 'concretion' is derived from the Latin concretio "(act of) compacting, condensing, congealing, uniting", itself from con meaning "together" and crescere meaning "to grow".

<span class="mw-page-title-main">Ooid</span> Small sedimentary grain that forms on shallow tropical seabeds

Ooids are small, spheroidal, "coated" (layered) sedimentary grains, usually composed of calcium carbonate, but sometimes made up of iron- or phosphate-based minerals. Ooids usually form on the sea floor, most commonly in shallow tropical seas. After being buried under additional sediment, these ooid grains can be cemented together to form a sedimentary rock called an oolite. Oolites usually consist of calcium carbonate; these belong to the limestone rock family. Pisoids are similar to ooids, but are larger than 2 mm in diameter, often considerably larger, as with the pisoids in the hot springs at Carlsbad in the Czech Republic.

<span class="mw-page-title-main">Matrix (geology)</span> Finer-grained material in a rock within which coarser material is embedded

The matrix or groundmass of a rock is the finer-grained mass of material in which larger grains, crystals, or clasts are embedded.

<span class="mw-page-title-main">Conglomerate (geology)</span> Sedimentary rock composed of smaller rock fragments

Conglomerate is a clastic sedimentary rock that is composed of a substantial fraction of rounded to subangular gravel-size clasts. A conglomerate typically contains a matrix of finer-grained sediments, such as sand, silt, or clay, which fills the interstices between the clasts. The clasts and matrix are typically cemented by calcium carbonate, iron oxide, silica, or hardened clay.

<span class="mw-page-title-main">Dolomite (rock)</span> Sedimentary carbonate rock that contains a high percentage of the mineral dolomite

Dolomite (also known as dolomite rock, dolostone or dolomitic rock) is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite, CaMg(CO3)2. It occurs widely, often in association with limestone and evaporites, though it is less abundant than limestone and rare in Cenozoic rock beds (beds less than about 66 million years in age). One of the first geologists to distinguish dolomite from limestone was Déodat Gratet de Dolomieu; a French mineralogist and geologist whom it is named after. He recognized and described the distinct characteristics of dolomite in the late 18th century, differentiating it from limestone.

<span class="mw-page-title-main">Carbonate rock</span> Class of sedimentary rock

Carbonate rocks are a class of sedimentary rocks composed primarily of carbonate minerals. The two major types are limestone, which is composed of calcite or aragonite (different crystal forms of CaCO3), and dolomite rock (also known as dolostone), which is composed of mineral dolomite (CaMg(CO3)2). They are usually classified based on texture and grain size. Importantly, carbonate rocks can exist as metamorphic and igneous rocks, too. When recrystallized carbonate rocks are metamorphosed, marble is created. Rare igneous carbonate rocks even exist as intrusive carbonatites and, even rarer, there exists volcanic carbonate lava.

The Folk classification, in geology, is a technical descriptive classification of sedimentary rocks devised by Robert L. Folk, an influential sedimentary petrologist and Professor Emeritus at the University of Texas.

<span class="mw-page-title-main">Clastic rock</span> Sedimentary rocks made of mineral or rock fragments

Clastic rocks are composed of fragments, or clasts, of pre-existing minerals and rock. A clast is a fragment of geological detritus, chunks, and smaller grains of rock broken off other rocks by physical weathering. Geologists use the term clastic to refer to sedimentary rocks and particles in sediment transport, whether in suspension or as bed load, and in sediment deposits.

<span class="mw-page-title-main">Beachrock</span> Sedimentary rock cemented with carbonates, formed along a shoreline

Beachrock is a friable to well-cemented sedimentary rock that consists of a variable mixture of gravel-, sand-, and silt-sized sediment that is cemented with carbonate minerals and has formed along a shoreline. Depending on location, the sediment that is cemented to form beachrock can consist of a variable mixture of shells, coral fragments, rock fragments of different types, and other materials. It can contain scattered artifacts, pieces of wood, and coconuts. Beachrock typically forms within the intertidal zone within tropical or semitropical regions. However, Quaternary beachrock is also found as far north and south as 60° latitude.

<span class="mw-page-title-main">Shallow water marine environment</span>

Shallow water marine environment refers to the area between the shore and deeper water, such as a reef wall or a shelf break. This environment is characterized by oceanic, geological and biological conditions, as described below. The water in this environment is shallow and clear, allowing the formation of different sedimentary structures, carbonate rocks, coral reefs, and allowing certain organisms to survive and become fossils.

<span class="mw-page-title-main">Microbiologically induced calcite precipitation</span> Bio-geochemical process

Microbiologically induced calcium carbonate precipitation (MICP) is a bio-geochemical process that induces calcium carbonate precipitation within the soil matrix. Biomineralization in the form of calcium carbonate precipitation can be traced back to the Precambrian period. Calcium carbonate can be precipitated in three polymorphic forms, which in the order of their usual stabilities are calcite, aragonite and vaterite. The main groups of microorganisms that can induce the carbonate precipitation are photosynthetic microorganisms such as cyanobacteria and microalgae; sulfate-reducing bacteria; and some species of microorganisms involved in nitrogen cycle. Several mechanisms have been identified by which bacteria can induce the calcium carbonate precipitation, including urea hydrolysis, denitrification, sulfate production, and iron reduction. Two different pathways, or autotrophic and heterotrophic pathways, through which calcium carbonate is produced have been identified. There are three autotrophic pathways, which all result in depletion of carbon dioxide and favouring calcium carbonate precipitation. In heterotrophic pathway, two metabolic cycles can be involved: the nitrogen cycle and the sulfur cycle. Several applications of this process have been proposed, such as remediation of cracks and corrosion prevention in concrete, biogrout, sequestration of radionuclides and heavy metals.

<span class="mw-page-title-main">Egg taphonomy</span> Study of the decomposition and fossilization of eggs

Egg taphonomy is the study of the decomposition and fossilization of eggs. The processes of egg taphonomy begin when the egg either hatches or dies. Eggshell fragments are robust and can often travel great distances before burial. More complete egg specimens gradually begin to fill with sediment, which hardens as minerals precipitate out of water percolating through pores or cracks in the shell. Throughout the fossilization process the calcium carbonate composing the eggshell generally remains unchanged, allowing scientists to study its original structure. However, egg fossils buried under sediments at great depth can be subjected to heat, pressure and chemical processes that can alter the structure of its shell through a process called diagenesis.

Automicrite is autochthonous micrite, that is, a carbonate mud precipitated in situ and made up of fine-grained calcite or aragonite micron-sized crystals. It precipitates on the sea floor or within the sediment as an authigenic mud thanks to physicochemical, microbial, photosynthetic and biochemical processes. It has peculiar fabrics and uniform mineralogical and chemical composition.

References

  1. Kenney TC, Moum J and Berre T (1967) An experimental study of bonds in natural clay. Proceedings of Geotechnical Conference, Oslo, Norway (Jørstad FA (ed.)). Norwegian Geotechnical Institute, Oslo, Norway, pp. 65–69.
  2. Coop, M. R. & Airey, D. W. (2003). Carbonate sands. In Characterisation and engineering properties of natural soils (eds T. S. Tan, K. K. Phoon, D.W. Hight and S. Leroueil), pp. 1049–1086. Lisse, the Netherlands: Swets & Zeitlinger

https://www.geolsoc.org.uk/ks3/gsl/education/resources/rockcycle/page3559.html