Iron oxide

Last updated
Electrochemically oxidized iron (rust) Almindeligt rust - jernoxid.jpg
Electrochemically oxidized iron (rust)

Iron oxides are chemical compounds composed of iron and oxygen. Several iron oxides are recognized. All are black magnetic solids. Often they are non-stoichiometric. Oxyhydroxides are a related class of compounds, perhaps the best known of which is rust. [1]

Contents

Iron oxides and oxyhydroxides are widespread in nature and play an important role in many geological and biological processes. They are used as iron ores, pigments, catalysts, and in thermite, and occur in hemoglobin. Iron oxides are inexpensive and durable pigments in paints, coatings and colored concretes. Colors commonly available are in the "earthy" end of the yellow/orange/red/brown/black range. When used as a food coloring, it has E number E172.

Stoichiometries

Iron oxide pigment. The brown color indicates that iron is at the oxidation state +3. IronOxidePigmentUSGOV.jpg
Iron oxide pigment. The brown color indicates that iron is at the oxidation state +3.
Green and reddish brown stains on a limestone core sample, respectively corresponding to oxides/hydroxides of Fe and Fe . Red and green iron oxides.jpg
Green and reddish brown stains on a limestone core sample, respectively corresponding to oxides/hydroxides of Fe and Fe .

Iron oxides feature as ferrous (Fe(II)) or ferric (Fe(III)) or both. They adopt octahedral or tetrahedral coordination geometry. Only a few oxides are significant at the earth's surface, particularly wüstite, magnetite, and hematite.

Thermal expansion

Iron oxideCTE (× 10−6 °C−1)
Fe2O314.9 [6]
Fe3O4>9.2 [6]
FeO12.1 [6]

Oxide-hydroxides

Reactions

In blast furnaces and related factories, iron oxides are converted to the metal. Typical reducing agents are various forms of carbon. A representative reaction starts with ferric oxide: [9]

2 Fe2O3 + 3 C → 4 Fe + 3 CO2

In nature

Iron is stored in many organisms in the form of ferritin, which is a ferrous oxide encased in a solubilizing protein sheath. [10]

Species of bacteria, including Shewanella oneidensis , Geobacter sulfurreducens and Geobacter metallireducens , use iron oxides as terminal electron acceptors. [11]

Uses

Almost all iron ores are oxides, so in that sense these materials are important precursors to iron metal and its many alloys.

Iron oxides are important pigments, coming in a variety of colors (black, red, yellow). Among their many advantages, they are inexpensive, strongly colored, and nontoxic. [12]

Magnetite is a component of magnetic recording tapes.

See also

Related Research Articles

<span class="mw-page-title-main">Hematite</span> Common iron oxide mineral

Hematite, also spelled as haematite, is a common iron oxide compound with the formula, Fe2O3 and is widely found in rocks and soils. Hematite crystals belong to the rhombohedral lattice system which is designated the alpha polymorph of Fe
2
O
3
. It has the same crystal structure as corundum (Al
2
O
3
) and ilmenite (FeTiO
3
). With this it forms a complete solid solution at temperatures above 950 °C (1,740 °F).

<span class="mw-page-title-main">Iron</span> Chemical element, symbol Fe and atomic number 26

Iron is a chemical element with the symbol Fe and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, just ahead of oxygen, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust, being mainly deposited by meteorites in its metallic state, with its ores also being found there.

<span class="mw-page-title-main">Goethite</span> Iron(III) oxide-hydroxide named in honor to the poet Goethe

Goethite is a mineral of the diaspore group, consisting of iron(III) oxide-hydroxide, specifically the α-polymorph. It is found in soil and other low-temperature environments such as sediment. Goethite has been well known since ancient times for its use as a pigment. Evidence has been found of its use in paint pigment samples taken from the caves of Lascaux in France. It was first described in 1806 based on samples found in the Hollertszug Mine in Herdorf, Germany. The mineral was named after the German polymath and poet Johann Wolfgang von Goethe (1749–1832).

<span class="mw-page-title-main">Iron(III) oxide</span> Chemical compound

Iron(III) oxide or ferric oxide is the inorganic compound with the formula Fe2O3. It is one of the three main oxides of iron, the other two being iron(II) oxide (FeO), which is rare; and iron(II,III) oxide (Fe3O4), which also occurs naturally as the mineral magnetite. As the mineral known as hematite, Fe2O3 is the main source of iron for the steel industry. Fe2O3 is readily attacked by acids. Iron(III) oxide is often called rust, and to some extent this label is useful, because rust shares several properties and has a similar composition; however, in chemistry, rust is considered an ill-defined material, described as Hydrous ferric oxide.

<span class="mw-page-title-main">Magnetite</span> Iron ore mineral

Magnetite is a mineral and one of the main iron ores, with the chemical formula Fe2+Fe3+2O4. It is one of the oxides of iron, and is ferrimagnetic; it is attracted to a magnet and can be magnetized to become a permanent magnet itself. With the exception of extremely rare native iron deposits, it is the most magnetic of all the naturally occurring minerals on Earth. Naturally magnetized pieces of magnetite, called lodestone, will attract small pieces of iron, which is how ancient peoples first discovered the property of magnetism.

<span class="mw-page-title-main">Wüstite</span> Iron(II) oxide mineral formed under reducing conditions

Wüstite (FeO) is a mineral form of iron(II) oxide found with meteorites and native iron. It has a grey colour with a greenish tint in reflected light. Wüstite crystallizes in the isometric-hexoctahedral crystal system in opaque to translucent metallic grains. It has a Mohs hardness of 5 to 5.5 and a specific gravity of 5.88. Wüstite is a typical example of a non-stoichiometric compound.

<span class="mw-page-title-main">Maghemite</span> Iron oxide with a spinel ferrite structure

Maghemite (Fe2O3, γ-Fe2O3) is a member of the family of iron oxides. It has the same formula as hematite, but the same spinel ferrite structure as magnetite (Fe3O4) and is also ferrimagnetic. It is sometimes spelled as "maghaemite".

<span class="mw-page-title-main">Iron(II,III) oxide</span> Chemical compound

Iron(II,III) oxide, or black iron oxide, is the chemical compound with formula Fe3O4. It occurs in nature as the mineral magnetite. It is one of a number of iron oxides, the others being iron(II) oxide (FeO), which is rare, and iron(III) oxide (Fe2O3) which also occurs naturally as the mineral hematite. It contains both Fe2+ and Fe3+ ions and is sometimes formulated as FeO ∙ Fe2O3. This iron oxide is encountered in the laboratory as a black powder. It exhibits permanent magnetism and is ferrimagnetic, but is sometimes incorrectly described as ferromagnetic. Its most extensive use is as a black pigment (see: Mars Black). For this purpose, it is synthesized rather than being extracted from the naturally occurring mineral as the particle size and shape can be varied by the method of production.

<span class="mw-page-title-main">Iron(III) oxide-hydroxide</span> Hydrous ferric oxide (HFO)

Iron(III) oxide-hydroxide or ferric oxyhydroxide is the chemical compound of iron, oxygen, and hydrogen with formula FeO(OH).

<span class="mw-page-title-main">Red beds</span> Sedimentary rocks with ferric oxides

Red beds are sedimentary rocks, typically consisting of sandstone, siltstone, and shale, that are predominantly red in color due to the presence of ferric oxides. Frequently, these red-colored sedimentary strata locally contain thin beds of conglomerate, marl, limestone, or some combination of these sedimentary rocks. The ferric oxides, which are responsible for the red color of red beds, typically occur as a coating on the grains of sediments comprising red beds. Classic examples of red beds are the Permian and Triassic strata of the western United States and the Devonian Old Red Sandstone facies of Europe.

<span class="mw-page-title-main">Ferrihydrite</span> Iron oxyhydroxide mineral

Ferrihydrite (Fh) is a widespread hydrous ferric oxyhydroxide mineral at the Earth's surface, and a likely constituent in extraterrestrial materials. It forms in several types of environments, from freshwater to marine systems, aquifers to hydrothermal hot springs and scales, soils, and areas affected by mining. It can be precipitated directly from oxygenated iron-rich aqueous solutions, or by bacteria either as a result of a metabolic activity or passive sorption of dissolved iron followed by nucleation reactions. Ferrihydrite also occurs in the core of the ferritin protein from many living organisms, for the purpose of intra-cellular iron storage.

Shewanella putrefaciens is a Gram-negative pleomorphic bacterium. It has been isolated from marine environments, as well as from anaerobic sandstone in the Morrison Formation in New Mexico. S. putrefaciens is also a facultative anaerobe with the ability to reduce iron and manganese metabolically; that is, it can use iron and manganese as the terminal electron acceptor in the electron transport chain. It is also one of the organisms associated with the odor of rotting fish, as it is a marine organism which produces trimethylamine.

<span class="mw-page-title-main">Mars surface color</span> Extraterrestrial geography

The surface color of the planet Mars appears reddish from a distance because of rusty atmospheric dust. From close up, it looks more of a butterscotch, and other common surface colors include golden, brown, tan, and greenish, depending on minerals.

<i>Shewanella oneidensis</i> Species of bacterium

Shewanella oneidensis is a bacterium notable for its ability to reduce metal ions and live in environments with or without oxygen. This proteobacterium was first isolated from Lake Oneida, NY in 1988, hence its name.

<span class="mw-page-title-main">Bacterial nanowires</span> Electrically conductive appendages produced by a number of bacteria

Bacterial nanowires are electrically conductive appendages produced by a number of bacteria most notably from the Geobacter and Shewanella genera. Conductive nanowires have also been confirmed in the oxygenic cyanobacterium Synechocystis PCC6803 and a thermophilic, methanogenic coculture consisting of Pelotomaculum thermopropionicum and Methanothermobacter thermoautotrophicus. From physiological and functional perspectives, bacterial nanowires are diverse. The precise role microbial nanowires play in their biological systems has not been fully realized, but several proposed functions exist. Outside of a naturally occurring environment, bacterial nanowires have shown potential to be useful in several fields, notably the bioenergy and bioremediation industries.

<span class="mw-page-title-main">Exoelectrogen</span>

An exoelectrogen normally refers to a microorganism that has the ability to transfer electrons extracellularly. While exoelectrogen is the predominant name, other terms have been used: electrochemically active bacteria, anode respiring bacteria, and electricigens. Electrons exocytosed in this fashion are produced following ATP production using an electron transport chain (ETC) during oxidative phosphorylation. Conventional cellular respiration requires a final electron acceptor to receive these electrons. Cells that use molecular oxygen (O2) as their final electron acceptor are described as using aerobic respiration, while cells that use other soluble compounds as their final electron acceptor are described as using anaerobic respiration. However, the final electron acceptor of an exoelectrogen is found extracellularly and can be a strong oxidizing agent in aqueous solution or a solid conductor/electron acceptor. Two commonly observed acceptors are iron compounds (specifically Fe(III) oxides) and manganese compounds (specifically Mn(III/IV) oxides). As oxygen is a strong oxidizer, cells are able to do this strictly in the absence of oxygen.

<span class="mw-page-title-main">Schikorr reaction</span> Transformation of Fe(OH)2 into Fe3O4 with hydrogen release

The Schikorr reaction formally describes the conversion of the iron(II) hydroxide (Fe(OH)2) into iron(II,III) oxide (Fe3O4). This transformation reaction was first studied by Gerhard Schikorr. The global reaction follows:

<i>Mariprofundus ferrooxydans</i> Species of bacterium

Mariprofundus ferrooxydans is a neutrophilic, chemolithotrophic, Gram-negative bacterium which can grow by oxidising ferrous to ferric iron. It is one of the few members of the class Zetaproteobacteria in the phylum Pseudomonadota. It is typically found in iron-rich deep sea environments, particularly at hydrothermal vents. M. ferrooxydans characteristically produces stalks of solid iron oxyhydroxides that form into iron mats. Genes that have been proposed to catalyze Fe(II) oxidation in M. ferrooxydans are similar to those involved in known metal redox pathways, and thus it serves as a good candidate for a model iron oxidizing organism.

Geobacter metallireducens is a gram-negative metal-reducing proteobacterium. It is a strict anaerobe that oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. It can also use uranium for its growth and convert U(VI) to U(IV).

Dissimilatory metal-reducing microorganisms are a group of microorganisms (both bacteria and archaea) that can perform anaerobic respiration utilizing a metal as terminal electron acceptor rather than molecular oxygen (O2), which is the terminal electron acceptor reduced to water (H2O) in aerobic respiration. The most common metals used for this end are iron [Fe(III)] and manganese [Mn(IV)], which are reduced to Fe(II) and Mn(II) respectively, and most microorganisms that reduce Fe(III) can reduce Mn(IV) as well. But other metals and metalloids are also used as terminal electron acceptors, such as vanadium [V(V)], chromium [Cr(VI)], molybdenum [Mo(VI)], cobalt [Co(III)], palladium [Pd(II)], gold [Au(III)], and mercury [Hg(II)].

References

  1. Cornell., RM.; Schwertmann, U (2003). The iron oxides: structure, properties, reactions, occurrences and. Wiley VCH. ISBN   978-3-527-30274-1.
  2. Lavina, B.; Dera, P.; Kim, E.; Meng, Y.; Downs, R. T.; Weck, P. F.; Sutton, S. R.; Zhao, Y. (Oct 2011). "Discovery of the recoverable high-pressure iron oxide Fe4O5". Proceedings of the National Academy of Sciences. 108 (42): 17281–17285. Bibcode:2011PNAS..10817281L. doi: 10.1073/pnas.1107573108 . PMC   3198347 . PMID   21969537.
  3. Lavina, Barbara; Meng, Yue (2015). "Synthesis of Fe5O6". Science Advances. 1 (5): e1400260. doi:10.1126/sciadv.1400260. PMC   4640612 . PMID   26601196.
  4. 1 2 Bykova, E.; Dubrovinsky, L.; Dubrovinskaia, N.; Bykov, M.; McCammon, C.; Ovsyannikov, S. V.; Liermann, H. -P.; Kupenko, I.; Chumakov, A. I.; Rüffer, R.; Hanfland, M.; Prakapenka, V. (2016). "Structural complexity of simple Fe2O3 at high pressures and temperatures". Nature Communications. 7: 10661. Bibcode:2016NatCo...710661B. doi:10.1038/ncomms10661. PMC   4753252 . PMID   26864300.
  5. Merlini, Marco; Hanfland, Michael; Salamat, Ashkan; Petitgirard, Sylvain; Müller, Harald (2015). "The crystal structures of Mg2Fe2C4O13, with tetrahedrally coordinated carbon, and Fe13O19, synthesized at deep mantle conditions". American Mineralogist. 100 (8–9): 2001–2004. Bibcode:2015AmMin.100.2001M. doi:10.2138/am-2015-5369. S2CID   54496448.
  6. 1 2 3 Fakouri Hasanabadi, M.; Kokabi, A.H.; Nemati, A.; Zinatlou Ajabshir, S. (February 2017). "Interactions near the triple-phase boundaries metal/glass/air in planar solid oxide fuel cells". International Journal of Hydrogen Energy. 42 (8): 5306–5314. doi:10.1016/j.ijhydene.2017.01.065. ISSN   0360-3199.
  7. Nishi, Masayuki; Kuwayama, Yasuhiro; Tsuchiya, Jun; Tsuchiya, Taku (2017). "The pyrite-type high-pressure form of FeOOH". Nature. 547 (7662): 205–208. Bibcode:2017Natur.547..205N. doi:10.1038/nature22823. ISSN   1476-4687. PMID   28678774. S2CID   205257075.
  8. Hu, Qingyang; Kim, Duckyoung; Liu, Jin; Meng, Yue; Liuxiang, Yang; Zhang, Dongzhou; Mao, Wendy L.; Mao, Ho-kwang (2017). "Dehydrogenation of goethite in Earth's deep lower mantle". Proceedings of the National Academy of Sciences. 114 (7): 1498–1501. Bibcode:2017PNAS..114.1498H. doi: 10.1073/pnas.1620644114 . PMC   5320987 . PMID   28143928.
  9. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1072. ISBN   978-0-08-037941-8.
  10. Honarmand Ebrahimi, Kourosh; Hagedoorn, Peter-Leon; Hagen, Wilfred R. (2015). "Unity in the Biochemistry of the Iron-Storage Proteins Ferritin and Bacterioferritin". Chemical Reviews. 115 (1): 295–326. doi: 10.1021/cr5004908 . PMID   25418839.
  11. Bretschger, O.; Obraztsova, A.; Sturm, C. A.; Chang, I. S.; Gorby, Y. A.; Reed, S. B.; Culley, D. E.; Reardon, C. L.; Barua, S.; Romine, M. F.; Zhou, J.; Beliaev, A. S.; Bouhenni, R.; Saffarini, D.; Mansfeld, F.; Kim, B.-H.; Fredrickson, J. K.; Nealson, K. H. (20 July 2007). "Current Production and Metal Oxide Reduction by Shewanella oneidensis MR-1 Wild Type and Mutants". Applied and Environmental Microbiology. 73 (21): 7003–7012. Bibcode:2007ApEnM..73.7003B. doi:10.1128/AEM.01087-07. PMC   2223255 . PMID   17644630.
  12. Buxbaum, Gunter; Printzen, Helmut; Mansmann, Manfred; Räde, Dieter; Trenczek, Gerhard; Wilhelm, Volker; Schwarz, Stefanie; Wienand, Henning; Adel (2009). "Pigments, Inorganic, 3. Colored Pigments". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.n20_n02.