Tantalum pentoxide

Last updated
Tantalum pentoxide
Kristallstruktur Triuranoctoxid.png
  Ta   O
Tantalum(V) oxide sample.jpg
Names
IUPAC name
Tantalum(V) oxide
Systematic IUPAC name
Ditantalum pentaoxide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.854 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/5O.2Ta
  • O=[Ta](=O)O[Ta](=O)=O
Properties
Ta2O5
Molar mass 441.893 g/mol
Appearancewhite, odorless powder
Density β-Ta2O5 = 8.18 g/cm3 [1]
α-Ta2O5 = 8.37 g/cm3
Melting point 1,872 °C (3,402 °F; 2,145 K)
negligible
Solubility insoluble in organic solvents and most mineral acids, reacts with HF
Band gap 3.8–5.3 eV
−32.0×10−6 cm3/mol
2.275
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Tantalum pentoxide, also known as tantalum(V) oxide, is the inorganic compound with the formula Ta
2
O
5
. It is a white solid that is insoluble in all solvents but is attacked by strong bases and hydrofluoric acid. Ta
2
O
5
is an inert material with a high refractive index and low absorption (i.e. colourless), which makes it useful for coatings. [2] It is also extensively used in the production of capacitors, due to its high dielectric constant.

Contents

Preparation

Occurrence

Tantalum occurs in the minerals tantalite and columbite (columbium being an archaic name for niobium), which occur in pegmatites, an igneous rock formation. Mixtures of columbite and tantalite are called coltan. Tantalite was discovered by Anders Gustaf Ekeberg [ when? ] at Ytterby, Sweden, and Kimoto, Finland. The minerals microlite and pyrochlore contain approximately 70% and 10% Ta, respectively.

Refining

Tantalum ores often contain significant amounts of niobium, which is itself a valuable metal. As such, both metals are extracted so that they may be sold. The overall process is one of hydrometallurgy and begins with a leaching step; in which the ore is treated with hydrofluoric acid and sulfuric acid to produce water-soluble hydrogen fluorides, such as the heptafluorotantalate. This allows the metals to be separated from the various non-metallic impurities in the rock.

(FeMn)(NbTa)2O6 + 16 HF → H2[TaF7] + H2[NbOF5] + FeF2 + MnF2 + 6 H2O

The tantalum and niobium hydrogenflorides are then removed from the aqueous solution by liquid-liquid extraction using organic solvents, such as cyclohexanone or methyl isobutyl ketone. This step allows the simple removal of various metal impurities (e.g. iron and manganese) which remain in the aqueous phase in the form of fluorides. Separation of the tantalum and niobium is then achieved by pH adjustment. Niobium requires a higher level of acidity to remain soluble in the organic phase and can hence be selectively removed by extraction into less acidic water. The pure tantalum hydrogen fluoride solution is then neutralised with aqueous ammonia to give hydrated tantalum oxide (Ta2O5(H2O)x), which is calcinated to tantalum pentoxide (Ta2O5) as described in these idealized equations: [3]

H2[TaF7] + 5 H2O + 7 NH31/2 Ta2O5(H2O)5 + 7 NH4F
Ta2O5(H2O)5 → Ta2O5 + 5 H2O

Natural pure tantalum oxide is known as the mineral tantite, although it is exceedingly rare. [4]

From alkoxides

Tantalum oxide is frequently used in electronics, often in the form of thin films. For these applications it can be produced by MOCVD (or related techniques), which involves the hydrolysis of its volatile halides or alkoxides:

Ta2(OEt)10 + 5 H2O → Ta2O5 + 10 EtOH
2 TaCl5 + 5 H2O → Ta2O5 + 10 HCl

Structure and properties

The crystal structure of tantalum pentoxide has been the matter of some debate. The bulk material is disordered, [5] being either amorphous or polycrystalline; with single crystals being difficult to grow. As such Xray crystallography has largely been limited to powder diffraction, which provides less structural information.

At least 2 polymorphs are known to exist. A low temperature form, known as L- or β-Ta2O5, and the high temperature form known as H- or α-Ta2O5. The transition between these two forms is slow and reversible; taking place between 1000 and 1360 °C, with a mixture of structures existing at intermediate temperatures. [5] The structures of both polymorphs consist of chains built from octahedral TaO6 and pentagonal bipyramidal TaO7 polyhedra sharing opposite vertices; which are further joined by edge-sharing. [6] [7] The overall crystal system is orthorhombic in both cases, with the space group of β-Ta2O5 being identified as Pna2 by single crystal X-ray diffraction. [8] A high pressure form (Z-Ta2O5) has also been reported, in which the Ta atoms adopt a 7 coordinate geometry to give a monoclinic structure (space group C2). [9]

Purely amorphous tantalum pentoxide has a similar local structure to the crystalline polymorphs, built from TaO6 and TaO7 polyhedra, while the molten liquid phase has a distinct structure based on lower coordination polyhedra, mainly TaO5 and TaO6. [10]

The difficulty in forming material with a uniform structure has led to variations in its reported properties. Like many metal oxides Ta2O5 is an insulator and its band gap has variously been reported as being between 3.8 and 5.3 eV, depending on the method of manufacture. [11] [12] [13] In general the more amorphous the material the greater its observed band gap. These observed values are significantly higher than those predicted by computational chemistry (2.3 - 3.8 eV). [14] [15] [16]

Its dielectric constant is typically about 25 [17] although values of over 50 have been reported. [18] In general tantalum pentoxide is considered to be a high-k dielectric material.

Reactions

Ta2O5 does not react appreciably with either HCl or HBr, however it will dissolve in hydrofluoric acid, and reacts with potassium bifluoride and HF according to the following equation: [19] [20]

Ta2O5 + 4 KHF2 + 6 HF → 2 K2[TaF7] + 5 H2O

Ta2O5 can be reduced to metallic Ta via the use of metallic reductants such as calcium and aluminium.

Ta2O5 + 5 Ca → 2 Ta + 5 CaO
Several 10 mF x 30 V DC rated tantalum capacitors, solid-bodied epoxy-dipped type. Polarity is explicitly marked. Tantalum capacitors.jpg
Several 10 μF × 30 V DC rated tantalum capacitors, solid-bodied epoxy-dipped type. Polarity is explicitly marked.

Uses

In electronics

Owing to its high band gap and dielectric constant, tantalum pentoxide has found a variety of uses in electronics, particularly in tantalum capacitors. These are used in automotive electronics, cell phones, and pagers, electronic circuitry; thin-film components; and high-speed tools. In the 1990s, interest grew in the use of tantalum oxide as a high-k dielectric for DRAM capacitor applications. [21] [22]

It is used in on-chip metal-insulator-metal capacitors for high frequency CMOS integrated circuits. Tantalum oxide may have applications as the charge trapping layer for non-volatile memories. [23] [24] There are applications of tantalum oxide in resistive switching memories. [25]

In optics

Due to its high refractive index, Ta2O5 has been utilized in the fabrication of the glass of photographic lenses. [2] [26] It can also be deposited as an optical coating with typical applications being antireflection and multilayer filter coatings in near UV to near infrared. [27]

Ta2O5 has also been found to have a high nonlinear refractive index, [28] [29] on the order of three times that of silicon nitiride, which has led to interest in the utilization of Ta2O5 in photonic integrated circuits. Ta2O5 has been recently utilized as the material platform for the generation of supercontinuum [30] [31] and Kerr frequency combs [29] in waveguides and optical ring resonators. Through the addition of rare-earth dopants in the deposition process, Ta2O5 waveguide lasers have been presented for a variety of applications, such as remote sensing and LiDAR. [32] [33] [34]

Related Research Articles

<span class="mw-page-title-main">Chemical vapor deposition</span> Method used to apply surface coatings

Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.

<span class="mw-page-title-main">Niobium</span> Chemical element, symbol Nb and atomic number 41

Niobium is a chemical element; it has symbol Nb and atomic number 41. It is a light grey, crystalline, and ductile transition metal. Pure niobium has a Mohs hardness rating similar to pure titanium, and it has similar ductility to iron. Niobium oxidizes in Earth's atmosphere very slowly, hence its application in jewelry as a hypoallergenic alternative to nickel. Niobium is often found in the minerals pyrochlore and columbite, hence the former name "columbium". Its name comes from Greek mythology: Niobe, daughter of Tantalus, the namesake of tantalum. The name reflects the great similarity between the two elements in their physical and chemical properties, which makes them difficult to distinguish.

<span class="mw-page-title-main">Tantalum</span> Chemical element, symbol Ta and atomic number 73

Tantalum is a chemical element; it has symbol Ta and atomic number 73. Previously known as tantalium, it is named after Tantalus, a figure in Greek mythology. Tantalum is a very hard, ductile, lustrous, blue-gray transition metal that is highly corrosion-resistant. It is part of the refractory metals group, which are widely used as components of strong high-melting-point alloys. It is a group 5 element, along with vanadium and niobium, and it always occurs in geologic sources together with the chemically similar niobium, mainly in the mineral groups tantalite, columbite and coltan.

<span class="mw-page-title-main">Electrolytic capacitor</span> Type of capacitor

An electrolytic capacitor is a polarized capacitor whose anode or positive plate is made of a metal that forms an insulating oxide layer through anodization. This oxide layer acts as the dielectric of the capacitor. A solid, liquid, or gel electrolyte covers the surface of this oxide layer, serving as the cathode or negative plate of the capacitor. Because of their very thin dielectric oxide layer and enlarged anode surface, electrolytic capacitors have a much higher capacitance-voltage (CV) product per unit volume than ceramic capacitors or film capacitors, and so can have large capacitance values. There are three families of electrolytic capacitor: aluminium electrolytic capacitors, tantalum electrolytic capacitors, and niobium electrolytic capacitors.

<span class="mw-page-title-main">Group 5 element</span> Group of elements in the periodic table

Group 5 is a group of elements in the periodic table. Group 5 contains vanadium (V), niobium (Nb), tantalum (Ta) and dubnium (Db). This group lies in the d-block of the periodic table. This group is sometimes called the vanadium group or vanadium family after its lightest member; however, the group itself has not acquired a trivial name because it belongs to the broader grouping of the transition metals.

In the semiconductor industry, the term high-κ dielectric refers to a material with a high dielectric constant, as compared to silicon dioxide. High-κ dielectrics are used in semiconductor manufacturing processes where they are usually used to replace a silicon dioxide gate dielectric or another dielectric layer of a device. The implementation of high-κ gate dielectrics is one of several strategies developed to allow further miniaturization of microelectronic components, colloquially referred to as extending Moore's Law.

<span class="mw-page-title-main">Tantalum(V) chloride</span> Chemical compound

Tantalum(V) chloride, also known as tantalum pentachloride, is an inorganic compound with the formula TaCl5. It takes the form of a white powder and is commonly used as a starting material in tantalum chemistry. It readily hydrolyzes to form tantalum(V) oxychloride (TaOCl3) and eventually tantalum pentoxide (Ta2O5); this requires that it be synthesised and manipulated under anhydrous conditions, using air-free techniques.

<span class="mw-page-title-main">Lanthanum oxide</span> Chemical compound

Lanthanum(III) oxide, also known as lanthana, chemical formula La2O3, is an inorganic compound containing the rare earth element lanthanum and oxygen. It is used in some ferroelectric materials, as a component of optical materials, and is a feedstock for certain catalysts, among other uses.

<span class="mw-page-title-main">Lithium niobate</span> Chemical compound

Lithium niobate is a synthetic salt consisting of niobium, lithium, and oxygen. Its single crystals are an important material for optical waveguides, mobile phones, piezoelectric sensors, optical modulators and various other linear and non-linear optical applications. Lithium niobate is sometimes referred to by the brand name linobate.

<span class="mw-page-title-main">Tantalum(V) bromide</span> Chemical compound

Tantalum(V) bromide is the inorganic compound with the formula Ta2Br10. Its name comes from the compound's empirical formula, TaBr5. It is a diamagnetic, orange solid that hydrolyses readily. The compound adopts an edge-shared bioctahedral structure, which means that two TaBr5 units are joined by a pair of bromide bridges. There is no bond between the Ta centres. Niobium(V) chloride, niobium(V) bromide, niobium(V) iodide, tantalum(V) chloride, and tantalum(V) iodide all share this structural motif.

<span class="mw-page-title-main">Niobium pentoxide</span> Chemical compound

Niobium pentoxide is the inorganic compound with the formula Nb2O5. A colorless, insoluble, and fairly unreactive solid, it is the most widespread precursor for other compounds and materials containing niobium. It is predominantly used in alloying, with other specialized applications in capacitors, optical glasses, and the production of lithium niobate.

<span class="mw-page-title-main">Tantalum capacitor</span> Type of electrolytic capacitor

A tantalum electrolytic capacitor is an electrolytic capacitor, a passive component of electronic circuits. It consists of a pellet of porous tantalum metal as an anode, covered by an insulating oxide layer that forms the dielectric, surrounded by liquid or solid electrolyte as a cathode. Because of its very thin and relatively high permittivity dielectric layer, the tantalum capacitor distinguishes itself from other conventional and electrolytic capacitors in having high capacitance per volume and lower weight.

<span class="mw-page-title-main">Polymer capacitor</span> Solid conductive electrolyte

A polymer capacitor, or more accurately a polymer electrolytic capacitor, is an electrolytic capacitor (e-cap) with a solid conductive polymer electrolyte. There are four different types:

<span class="mw-page-title-main">Potassium heptafluorotantalate</span> Chemical compound

Potassium heptafluorotantalate is an inorganic compound with the formula K2[TaF7]. It is the potassium salt of the heptafluorotantalate anion [TaF7]2−. This white, water-soluble solid is an intermediate in the purification of tantalum from its ores and is the precursor to the metal.

<span class="mw-page-title-main">Tantalum(V) ethoxide</span> Chemical compound

Tantalum(V) ethoxide is a metalorganic compound with formula Ta2(OC2H5)10, often abbreviated as Ta2(OEt)10. It is a colorless solid that dissolves in some organic solvents but hydrolyzes readily. It is used to prepare films of tantalum(V) oxide.

<span class="mw-page-title-main">Ixiolite</span>

Ixiolite is an accessory oxide mineral found in granitic pegmatites. It is an oxide with the general chemical formula (Ta,Nb,Sn,Mn,Fe)4O8 or (Ta,Mn,Nb)O2.

LSAT is the most common name for the inorganic compound lanthanum aluminate - strontium aluminium tantalate, which has the chemical formula (LaAlO3)0.3(Sr2TaAlO6)0.7 or its less common alternative: (La0.18Sr0.82)(Al0.59Ta0.41)O3. LSAT is a hard, optically transparent oxide of the elements lanthanum, aluminium, strontium and tantalum. LSAT has the perovskite crystal structure, and its most common use is as a single crystal substrate for the growth of epitaxial thin films.

<span class="mw-page-title-main">Niobium capacitor</span> Electrolytic capacitor

A niobium electrolytic capacitor is an electrolytic capacitor whose anode (+) is made of passivated niobium metal or niobium monoxide, on which an insulating niobium pentoxide layer acts as a dielectric. A solid electrolyte on the surface of the oxide layer serves as the capacitor's cathode (−).

<span class="mw-page-title-main">Tantalum(V) iodide</span> Chemical compound

Tantalum(V) iodide is the inorganic compound with the formula Ta2I10. Its name comes from the compound's empirical formula, TaI5. It is a diamagnetic, black solid that hydrolyses readily. The compound adopts an edge-shared bioctahedral structure, which means that two TaI5 units are joined by a pair of iodide bridges. There is no bond between the Ta centres. Niobium(V) chloride, niobium(V) bromide, niobium(V) iodide, tantalum(V) chloride, and tantalum(V) bromide all share this structural motif.

Hafnium compounds are compounds containing the element hafnium (Hf). Due to the lanthanide contraction, the ionic radius of hafnium(IV) (0.78 ångström) is almost the same as that of zirconium(IV) (0.79 angstroms). Consequently, compounds of hafnium(IV) and zirconium(IV) have very similar chemical and physical properties. Hafnium and zirconium tend to occur together in nature and the similarity of their ionic radii makes their chemical separation rather difficult. Hafnium tends to form inorganic compounds in the oxidation state of +4. Halogens react with it to form hafnium tetrahalides. At higher temperatures, hafnium reacts with oxygen, nitrogen, carbon, boron, sulfur, and silicon. Some compounds of hafnium in lower oxidation states are known.

References

  1. Reisman, Arnold; Holtzberg, Frederic; Berkenblit, Melvin; Berry, Margaret (20 September 1956). "Reactions of the Group VB Pentoxides with Alkali Oxides and Carbonates. III. Thermal and X-Ray Phase Diagrams of the System K2O or K2CO3 with Ta2O5". Journal of the American Chemical Society. 78 (18): 4514–4520. doi:10.1021/ja01599a003.
  2. 1 2 Fairbrother, Frederick (1967). The Chemistry of Niobium and Tantalum . New York: Elsevier Publishing Company. pp.  1–28. ISBN   978-0-444-40205-9.
  3. Anthony Agulyanski (2004). "Fluorine chemistry in the processing of tantalum and niobium". In Anatoly Agulyanski (ed.). Chemistry of Tantalum and Niobium Fluoride Compounds (1st ed.). Burlington: Elsevier. ISBN   9780080529028.
  4. "Tantite: Tantite mineral information and data". Mindat.org. Retrieved 2016-03-03.
  5. 1 2 Askeljung, Charlotta; Marinder, Bengt-Olov; Sundberg, Margareta (1 November 2003). "Effect of heat treatment on the structure of L-Ta2O5". Journal of Solid State Chemistry. 176 (1): 250–258. Bibcode:2003JSSCh.176..250A. doi:10.1016/j.jssc.2003.07.003.
  6. Stephenson, N. C.; Roth, R. S. (1971). "Structural systematics in the binary system Ta2O5–WO3. V. The structure of the low-temperature form of tantalum oxide L-Ta2O5". Acta Crystallographica Section B. 27 (5): 1037–1044. Bibcode:1971AcCrB..27.1037S. doi:10.1107/S056774087100342X.
  7. Wells, A.F. (1947). Structural Inorganic Chemistry. Oxford: Clarendon Press.
  8. Wolten, G. M.; Chase, A. B. (1 August 1969). "Single-crystal data for β Ta2O5 and A KPO3". Zeitschrift für Kristallographie. 129 (5–6): 365–368. Bibcode:1969ZK....129..365W. doi:10.1524/zkri.1969.129.5-6.365.
  9. Zibrov, I. P.; Filonenko, V. P.; Sundberg, M.; Werner, P.-E. (1 August 2000). "Structures and phase transitions of B-Ta2O5 and Z-Ta2O5: two high-pressure forms of Ta2O5". Acta Crystallographica Section B. 56 (4): 659–665. doi:10.1107/S0108768100005462. PMID   10944257. S2CID   22330435.
  10. Alderman, O. L. G.; Benmore, C.J.; Neuefeind, J.; Coillet, E.; Mermet, A.; Martinez, V.; Tamalonis, A.; Weber, R. (2018). "Amorphous tantala and its relationship with the molten state". Physical Review Materials. 2 (4): 043602. Bibcode:2018PhRvM...2d3602A. doi: 10.1103/PhysRevMaterials.2.043602 .
  11. Kukli, Kaupo; Aarik, Jaan; Aidla, Aleks; Kohan, Oksana; Uustare, Teet; Sammelselg, Väino (1995). "Properties of tantalum oxide thin films grown by atomic layer deposition". Thin Solid Films. 260 (2): 135–142. Bibcode:1995TSF...260..135K. doi:10.1016/0040-6090(94)06388-5.
  12. Fleming, R. M.; Lang, D. V.; Jones, C. D. W.; Steigerwald, M. L.; Murphy, D. W.; Alers, G. B.; Wong, Y.-H.; van Dover, R. B.; Kwo, J. R.; Sergent, A. M. (1 January 2000). "Defect dominated charge transport in amorphous Ta2O5 thin films". Journal of Applied Physics. 88 (2): 850. Bibcode:2000JAP....88..850F. doi:10.1063/1.373747.
  13. Murawala, Prakash A.; Sawai, Mikio; Tatsuta, Toshiaki; Tsuji, Osamu; Fujita, Shizuo; Fujita, Shigeo (1993). "Structural and Electrical Properties of Ta2O5 Grown by the Plasma-Enhanced Liquid Source CVD Using Penta Ethoxy Tantalum Source". Japanese Journal of Applied Physics. 32 (Part 1, No. 1B): 368–375. Bibcode:1993JaJAP..32..368M. doi:10.1143/JJAP.32.368. S2CID   97813703.
  14. Ramprasad, R. (1 January 2003). "First principles study of oxygen vacancy defects in tantalum pentoxide". Journal of Applied Physics. 94 (9): 5609–5612. Bibcode:2003JAP....94.5609R. doi:10.1063/1.1615700.
  15. Sawada, H.; Kawakami, K. (1 January 1999). "Electronic structure of oxygen vacancy in Ta2O5". Journal of Applied Physics. 86 (2): 956. Bibcode:1999JAP....86..956S. doi:10.1063/1.370831.
  16. Nashed, Ramy; Hassan, Walid M. I.; Ismail, Yehea; Allam, Nageh K. (2013). "Unravelling the interplay of crystal structure and electronic band structure of tantalum oxide (Ta2O5)". Physical Chemistry Chemical Physics. 15 (5): 1352–7. Bibcode:2013PCCP...15.1352N. doi:10.1039/C2CP43492J. PMID   23243661.
  17. Macagno, V.; Schultze, J.W. (1 December 1984). "The growth and properties of thin oxide layers on tantalum electrodes". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 180 (1–2): 157–170. doi:10.1016/0368-1874(84)83577-7.
  18. Hiratani, M.; Kimura, S.; Hamada, T.; Iijima, S.; Nakanishi, N. (1 January 2002). "Hexagonal polymorph of tantalum–pentoxide with enhanced dielectric constant". Applied Physics Letters. 81 (13): 2433. Bibcode:2002ApPhL..81.2433H. doi:10.1063/1.1509861.
  19. Agulyansky, A (2003). "Potassium fluorotantalate in solid, dissolved and molten conditions". J. Fluorine Chem. 123 (2): 155–161. doi:10.1016/S0022-1139(03)00190-8.
  20. Brauer, Georg (1965). Handbook of preparative inorganic chemistry. Academic Press. p. 256. ISBN   978-0-12-395591-3.
  21. Ezhilvalavan, S.; Tseng, T. Y. (1999). "Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application - a review". Journal of Materials Science: Materials in Electronics. 10 (1): 9–31. doi:10.1023/A:1008970922635. S2CID   55644772.
  22. Chaneliere, C; Autran, J L; Devine, R A B; Balland, B (1998). "Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications". Materials Science and Engineering: R. 22 (6): 269–322. doi:10.1016/S0927-796X(97)00023-5.
  23. Wang, X; et al. (2004). "A Novel MONOS-Type Nonvolatile Memory Using High-κ Dielectrics for Improved Data Retention and Programming Speed". IEEE Transactions on Electron Devices. 51 (4): 597–602. Bibcode:2004ITED...51..597W. doi:10.1109/TED.2004.824684.
  24. Zhu, H; et al. (2013). "Design and Fabrication of Ta2O5 Stacks for Discrete Multibit Memory Application". IEEE Transactions on Nanotechnology. 12 (6): 1151–1157. Bibcode:2013ITNan..12.1151Z. doi:10.1109/TNANO.2013.2281817. S2CID   44045227.
  25. Lee, M-.J; et al. (2011). "A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures". Nature Materials . 10 (8): 625–630. Bibcode:2011NatMa..10..625L. doi:10.1038/NMAT3070. PMID   21743450.
  26. Musikant, Solomon (1985). "Optical Glas Composition". Optical Materials: An Introduction to Selection and Application. CRC Press. p. 28. ISBN   978-0-8247-7309-0.
  27. "Tantalum Oxide for Optical Coating Applications". Materion. Retrieved April 1, 2021.
  28. Tai, Chao-Yi; Wilkinson, James S.; Perney, Nicolas M. B.; Netti, M. Caterina; Cattaneo, F.; Finlayson, Chris E.; Baumberg, Jeremy J. (2004-10-18). "Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation". Optics Express. 12 (21): 5110–5116. Bibcode:2004OExpr..12.5110T. doi: 10.1364/OPEX.12.005110 . ISSN   1094-4087. PMID   19484065.
  29. 1 2 Jung, Hojoong; Yu, Su-Peng; Carlson, David R.; Drake, Tara E.; Briles, Travis C.; Papp, Scott B. (2021-06-20). "Tantala Kerr nonlinear integrated photonics". Optica. 8 (6): 811–817. arXiv: 2007.12958 . Bibcode:2021Optic...8..811J. doi:10.1364/OPTICA.411968. ISSN   2334-2536. S2CID   220793938.
  30. Woods, Jonathan R. C.; Daykin, Jake; Tong, Amy S. K.; Lacava, Cosimo; Petropoulos, Periklis; Tropper, Anne C.; Horak, Peter; Wilkinson, James S.; Apostolopoulos, Vasilis (2020-10-12). "Supercontinuum generation in tantalum pentoxide waveguides for pump wavelengths in the 900 nm to 1500 nm spectral region". Optics Express. 28 (21): 32173–32184. Bibcode:2020OExpr..2832173W. doi: 10.1364/OE.403089 . ISSN   1094-4087. PMID   33115180.
  31. Fan, Ranran; Lin, Yuan-Yao; Chang, Lin; Boes, Andreas; Bowers, John; Liu, Jia-Wei; Lin, Chao-Hong; Wang, Te-Keng; Qiao, Junpeng; Kuo, Hao-Chung; Lin, Gong-Ru; Shih, Min-Hsiung; Hung, Yung-Jr; Chiu, Yi-Jen; Lee, Chao-Kuei (2021-04-12). "Higher order mode supercontinuum generation in tantalum pentoxide (Ta2O5) channel waveguide". Scientific Reports. 11 (1): 7978. Bibcode:2021NatSR..11.7978F. doi:10.1038/s41598-021-86922-8. ISSN   2045-2322. PMC   8042067 . PMID   33846403.
  32. Tong, Amy S. K.; Mitchell, Colin J.; Aghajani, Armen; Sessions, Neil; Senthil Murugan, G.; Mackenzie, Jacob I.; Wilkinson, James S. (2020-09-01). "Spectroscopy of thulium-doped tantalum pentoxide waveguides on silicon". Optical Materials Express. 10 (9): 2201. Bibcode:2020OMExp..10.2201T. doi: 10.1364/OME.397011 . ISSN   2159-3930.
  33. Aghajani, A; Murugan, G S; Sessions, N P; Apostolopoulos, V; Wilkinson, J S (2015-06-17). "Spectroscopy of high index contrast Yb:Ta 2 O 5 waveguides for lasing applications". Journal of Physics: Conference Series. 619 (1): 012031. Bibcode:2015JPhCS.619a2031A. doi: 10.1088/1742-6596/619/1/012031 . ISSN   1742-6596.
  34. Subramani, Ananth Z.; Oton, Claudio J.; Shepherd, David P.; Wilkinson, James S. (November 2010). "Erbium-Doped Waveguide Laser in Tantalum Pentoxide". IEEE Photonics Technology Letters. 22 (21): 1571–1573. Bibcode:2010IPTL...22.1571S. doi:10.1109/LPT.2010.2072495. ISSN   1041-1135. S2CID   28849615.