Terbium | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | /ˈtɜːrbiəm/ | |||||||||||||||||||||||||||
Appearance | silvery white | |||||||||||||||||||||||||||
Standard atomic weight Ar°(Tb) | ||||||||||||||||||||||||||||
Terbium in the periodic table | ||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||
Atomic number (Z) | 65 | |||||||||||||||||||||||||||
Group | f-block groups (no number) | |||||||||||||||||||||||||||
Period | period 6 | |||||||||||||||||||||||||||
Block | f-block | |||||||||||||||||||||||||||
Electron configuration | [ Xe ] 4f9 6s2 | |||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 27, 8, 2 | |||||||||||||||||||||||||||
Physical properties | ||||||||||||||||||||||||||||
Phase at STP | solid | |||||||||||||||||||||||||||
Melting point | 1629 K (1356 °C,2473 °F) | |||||||||||||||||||||||||||
Boiling point | 3396 K(3123 °C,5653 °F) | |||||||||||||||||||||||||||
Density (at 20° C) | 8.229 g/cm3 [3] | |||||||||||||||||||||||||||
when liquid (at m.p.) | 7.65 g/cm3 | |||||||||||||||||||||||||||
Heat of fusion | 10.15 kJ/mol | |||||||||||||||||||||||||||
Heat of vaporization | 391 kJ/mol | |||||||||||||||||||||||||||
Molar heat capacity | 28.91 J/(mol·K) | |||||||||||||||||||||||||||
Vapor pressure
| ||||||||||||||||||||||||||||
Atomic properties | ||||||||||||||||||||||||||||
Oxidation states | common: +3 0, [4] +1, [5] +2, [6] +4 [7] | |||||||||||||||||||||||||||
Electronegativity | Pauling scale: 1.2(?) | |||||||||||||||||||||||||||
Ionization energies |
| |||||||||||||||||||||||||||
Atomic radius | empirical:177 pm | |||||||||||||||||||||||||||
Covalent radius | 194±5 pm | |||||||||||||||||||||||||||
Spectral lines of terbium | ||||||||||||||||||||||||||||
Other properties | ||||||||||||||||||||||||||||
Natural occurrence | primordial | |||||||||||||||||||||||||||
Crystal structure | hexagonal close-packed (hcp)(hP2) | |||||||||||||||||||||||||||
Lattice constants | a = 360.56 pm c = 569.66 pm (at 20 °C) [3] | |||||||||||||||||||||||||||
Thermal expansion | at r.t. poly: 10.3 µm/(m⋅K) | |||||||||||||||||||||||||||
Thermal conductivity | 11.1 W/(m⋅K) | |||||||||||||||||||||||||||
Electrical resistivity | α, poly: 1.150 µΩ⋅m(at r.t.) | |||||||||||||||||||||||||||
Magnetic ordering | paramagnetic at 300 K | |||||||||||||||||||||||||||
Molar magnetic susceptibility | +146000×10−6 cm3/mol(273 K) [8] | |||||||||||||||||||||||||||
Young's modulus | 55.7 GPa | |||||||||||||||||||||||||||
Shear modulus | 22.1 GPa | |||||||||||||||||||||||||||
Bulk modulus | 38.7 GPa | |||||||||||||||||||||||||||
Speed of sound thin rod | 2620 m/s(at 20 °C) | |||||||||||||||||||||||||||
Poisson ratio | 0.261 | |||||||||||||||||||||||||||
Vickers hardness | 450–865 MPa | |||||||||||||||||||||||||||
Brinell hardness | 675–1200 MPa | |||||||||||||||||||||||||||
CAS Number | 7440-27-9 | |||||||||||||||||||||||||||
History | ||||||||||||||||||||||||||||
Naming | after Ytterby (Sweden), where it was mined | |||||||||||||||||||||||||||
Discovery and first isolation | Carl Gustaf Mosander (1843) | |||||||||||||||||||||||||||
Isotopes of terbium | ||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||
Terbium is a chemical element; it has the symbol Tb and atomic number 65. It is a silvery-white, rare earth metal that is malleable and ductile. The ninth member of the lanthanide series, terbium is a fairly electropositive metal that reacts with water, evolving hydrogen gas. Terbium is never found in nature as a free element, but it is contained in many minerals, including cerite, gadolinite, monazite, xenotime and euxenite.
Swedish chemist Carl Gustaf Mosander discovered terbium as a chemical element in 1843. He detected it as an impurity in yttrium oxide (Y2O3). Yttrium and terbium, as well as erbium and ytterbium, are named after the village of Ytterby in Sweden. Terbium was not isolated in pure form until the advent of ion exchange techniques.
Terbium is used to dope calcium fluoride, calcium tungstate and strontium molybdate in solid-state devices, and as a crystal stabilizer of fuel cells that operate at elevated temperatures. As a component of Terfenol-D (an alloy that expands and contracts when exposed to magnetic fields more than any other alloy), terbium is of use in actuators, in naval sonar systems and in sensors. Terbium is considered non-hazardous, though its biological role and toxicity has not been researched in depth.
Most of the world's terbium supply is used in green phosphors. Terbium oxide is used in fluorescent lamps and television and monitor cathode-ray tubes (CRTs). Terbium green phosphors are combined with divalent europium blue phosphors and trivalent europium red phosphors to provide trichromatic lighting technology, a high-efficiency white light used in indoor lighting.
Terbium is a silvery-white rare earth metal that is malleable, ductile and soft enough to be cut with a knife. [10] It is relatively stable in air compared to the more reactive lanthanides in the first half of the lanthanide series. [11] Terbium exists in two crystal allotropes with a transformation temperature of 1289 °C between them. [10] The 65 electrons of a terbium atom are arranged in the electron configuration [Xe]4f96s2. The eleven 4f and 6s electrons are valence. Only three electrons can be removed before the nuclear charge becomes too great to allow further ionization, but in the case of terbium, the stability of the half-filled [Xe]4f7 configuration allows further ionization of a fourth electron in the presence of very strong oxidizing agents such as fluorine gas. [10]
The terbium(III) cation (Tb3+) is brilliantly fluorescent, in a bright lemon-yellow color that is the result of a strong green emission line in combination with other lines in the orange and red. The yttrofluorite variety of the mineral fluorite owes its creamy-yellow fluorescence in part to terbium. Terbium easily oxidizes, and is therefore used in its elemental form specifically for research. Single terbium atoms have been isolated by implanting them into fullerene molecules. Trivalent europium (Eu3+) and Tb3+ ions are among the lanthanide ions that have garnered the most attention because of their strong luminosity and great color purity. [12] [13]
Terbium has a simple ferromagnetic ordering at temperatures below 219 K. Above 219 K, it turns into a helical antiferromagnetic state in which all of the atomic moments in a particular basal plane layer are parallel and oriented at a fixed angle to the moments of adjacent layers. This antiferromagnetism transforms into a disordered paramagnetic state at 230 K. [14]
Terbium metal is an electropositive element and oxidizes in the presence of most acids (such as sulfuric acid), all of the halogens, and water. [15]
Terbium oxidizes readily in air to form a mixed terbium(III,IV) oxide: [15]
The most common oxidation state of terbium is +3 (trivalent), such as in TbCl
3. In the solid state, tetravalent terbium is also known, in compounds such as terbium oxide (TbO2) and terbium tetrafluoride. [16] In solution, terbium typically forms trivalent species, but can be oxidized to the tetravalent state with ozone in highly basic aqueous conditions. [17]
The coordination and organometallic chemistry of terbium is similar to other lanthanides. In aqueous conditions, terbium can be coordinated by nine water molecules, which are arranged in a tricapped trigonal prismatic molecular geometry. [18] Complexes of terbium with lower coordination number are also known, typically with bulky ligands like bis(trimethylsilyl)amide, which forms the three-coordinate tris[N,N-bis(trimethylsilyl)amide]terbium(III) (Tb[N(SiMe3)2]3) complex. [19]
Most coordination and organometallic complexes contain terbium in the trivalent oxidation state. Divalent Tb2+ complexes are also known, usually with bulky cyclopentadienyl-type ligands. [20] [21] [22] A few coordination compounds containing terbium in its tetravalent state are also known. [23] [24] [25]
Like most rare-earth elements and lanthanides, terbium is usually found in the +3 oxidation state. Like cerium and praseodymium, terbium can also form a +4 oxidation state, [26] although it is unstable in water. [27] It is possible for terbium to be found in the 0, [28] [29] +1, [30] and +2 [26] oxidation states.
Terbium combines with nitrogen, carbon, sulfur, phosphorus, boron, selenium, silicon and arsenic at elevated temperatures, forming various binary compounds such as TbH2, TbH3, TbB2, Tb2S3, TbSe, TbTe and TbN . [31] In these compounds, terbium mainly exhibits the oxidation state +3, with the +2 state appearing rarely. Terbium(II) halides are obtained by annealing terbium(III) halides in presence of metallic terbium in tantalum containers. Terbium also forms the sesquichloride Tb2Cl3, which can be further reduced to terbium(I) chloride (TbCl) by annealing at 800 °C; this compound forms platelets with layered graphite-like structure. [32]
Terbium(IV) fluoride (TbF4) is the only halide that tetravalent terbium can form. It has strong oxidizing properties and is a strong fluorinating agent, emitting relatively pure atomic fluorine when heated, rather than the mixture of fluoride vapors emitted from cobalt(III) fluoride or cerium(IV) fluoride. [33] It can be obtained by reacting terbium(III) chloride or terbium(III) fluoride with fluorine gas at 320 °C: [34]
When TbF4 and caesium fluoride (CsF) is mixed in a stoichiometric ratio in a fluorine gas atmosphere, caesium pentafluoroterbate (CsTbF5) is obtained. It is an orthorhombic crystal with space group Cmca and a layered structure composed of [TbF8]4− and 11-coordinated Cs+. [35] The compound barium hexafluoroterbate (BaTbF6), an orthorhombic crystal with space group Cmma, can be prepared in a similar method. The terbium fluoride ion [TbF8]4− [36] also exists in the structure of potassium terbium fluoride crystals. [37] [38]
Terbium(III) oxide or terbia is the main oxide of terbium, and appears as a dark brown water-insoluble solid. It is slightly hygroscopic [39] and is the main terbium compound found in rare earth-containing minerals and clays. [40]
Other compounds include:
Naturally occurring terbium is composed of its only stable isotope, terbium-159; the element is thus mononuclidic and monoisotopic. [41] Thirty-nine radioisotopes have been characterized, [42] with the heaviest being terbium-174 and lightest being terbium-135 (both with unknown exact mass). [9] The most stable synthetic radioisotopes of terbium are terbium-158, with a half-life of 180 years, and terbium-157, with a half-life of 71 years. All of the remaining radioactive isotopes have half-lives that are less than three months, and the majority of these have half-lives that are less than half a minute. [9] The primary decay mode before the most abundant stable isotope, 159Tb, is electron capture, which results in production of gadolinium isotopes, and the primary mode after is beta minus decay, resulting in dysprosium isotopes. [9]
The element also has 31 nuclear isomers, with masses of 141–154, 156, 158, 162, and 164–168 (not every mass number corresponds to only one isomer). [42] The most stable of them are terbium-156m, with a half-life of 24.4 hours, and terbium-156m2, with a half-life of 22.7 hours; this is longer than half-lives of most ground states of radioactive terbium isotopes, except those with mass numbers 155–161. [9]
Terbium-149, with a half-life of 4.1 hours, is a promising candidate in targeted alpha therapy and positron emission tomography. [43] [44]
Swedish chemist Carl Gustaf Mosander discovered terbium in 1843. [45] [46] He detected it as an impurity in yttrium oxide, Y2O3, then known as yttria. Yttrium, erbium, and terbium are all named after the village of Ytterby in Sweden. [47] [48] Terbium was not isolated in pure form until the advent of ion exchange techniques. [49]
Mosander first separated yttria into three fractions, all named for the ore: yttria, erbia, and terbia. "Terbia" was originally the fraction that contained the pink color, due to the element now known as erbium. "Erbia", the oxide containing what is now known as terbium, originally was the fraction that was yellow or dark orange in solution. [45] [47] The insoluble oxide of this element was noted to be tinged brown, [50] [51] [39] and soluble oxides after combustion were noted to be colorless. [52] Until the advent of spectral analysis, arguments went back and forth as to whether erbia even existed. Spectral analysis by Marc Delafontaine allowed the separate elements and their oxides to be identified, [49] but in his publications, the names of erbium and terbium were switched, [53] following a brief period where terbium was renamed "mosandrum", after Mosander. [54] The names have remained switched ever since. [47]
The early years of preparing terbium (as terbium oxide) were difficult. Metal oxides from gadolinite and samarskite were dissolved in nitric acid, and the solution was further separated using oxalic acid and potassium sulfate. There was great difficulty in separating erbia from terbia; in 1881, it was noted that there was no satisfactory method to separate the two. [52] By 1914, different solvents had been used to separate terbium from its host minerals, but the process of separating terbium from its neighbor elements - gadolinium and dysprosium - was described as "tedious" but possible. [55] Modern terbium extraction methods are based on the liquid–liquid extraction process developed by Werner Fischer et al., in 1937. [56]
Terbium occurs with other rare earth elements in many minerals, including monazite ((Ce,La,Th,Nd,Y)PO4 with up to 0.03% terbium), xenotime (YPO4) and euxenite ((Y,Ca,Er,La,Ce,U,Th)(Nb,Ta,Ti)2O6 with 1% or more terbium). The crust abundance of terbium is estimated as 1.2 mg/kg. [31] No terbium-dominant mineral has yet been found. [57]
Terbium (as the species Tb II) has been detected in the atmosphere of KELT-9b, a hot-Jupiter planet outside the Solar system. [58]
Currently, the richest commercial sources of terbium are the ion-adsorption clays of southern China; [40] the concentrates with about two-thirds yttrium oxide by weight have about 1% terbia. Small amounts of terbium occur in bastnäsite and monazite; when these are processed by solvent extraction to recover the valuable heavy lanthanides as samarium-europium-gadolinium concentrate, terbium is recovered therein. Due to the large volumes of bastnäsite processed relative to the ion-adsorption clays, a significant proportion of the world's terbium supply comes from bastnäsite. [10]
In 2018, a rich terbium supply was discovered off the coast of Japan's Minamitori Island, with the stated supply being "enough to meet the global demand for 420 years". [59]
Crushed terbium-containing minerals are treated with hot concentrated sulfuric acid to produce water-soluble sulfates of rare earths. The acidic filtrates are partially neutralized with caustic soda to pH 3–4. Thorium precipitates out of solution as hydroxide and is removed. The solution is treated with ammonium oxalate to convert rare earths into their insoluble oxalates. The oxalates are decomposed to oxides by heating. The oxides are dissolved in nitric acid that excludes one of the main components, cerium, whose oxide is insoluble in HNO3. Terbium is separated as a double salt with ammonium nitrate by crystallization. [31]
The most efficient separation routine for terbium salt from the rare-earth salt solution is ion exchange. In this process, rare-earth ions are sorbed onto suitable ion-exchange resin by exchange with hydrogen, ammonium or cupric ions present in the resin. The rare earth ions are then selectively washed out by suitable complexing agents. As with other rare earths, terbium metal is produced by reducing the anhydrous chloride or fluoride with calcium metal. Calcium and tantalum impurities can be removed by vacuum remelting, distillation, amalgam formation or zone melting. [31] [49]
In 2020, the annual demand for terbium was estimated at 340 tonnes (750,000 lb). [40] Terbium is not distinguished from other rare earths in the United States Geological Survey's Mineral Commodity Summaries, which in 2024 estimated the global reserves of rare earth minerals at 110,000,000 tonnes (2.4×1011 lb). [60]
Terbium is used as a dopant in calcium fluoride, calcium tungstate, and strontium molybdate, materials that are used in solid-state devices, and as a crystal stabilizer of fuel cells which operate at elevated temperatures, together with zirconium dioxide (ZrO2). [10] [61]
Terbium is also used in alloys and in the production of electronic devices. As a component of Terfenol-D, terbium is used in actuators, in naval sonar systems, sensors, and other magnetomechanical devices. Terfenol-D is a terbium alloy that expands or contracts in the presence of a magnetic field. [62] It has the highest magnetostriction of any alloy. [63] It is used to increase verdet constant in long-distance fiber optic communication. [64] [65] Terbium-doped garnets are also used in optical isolators, which prevents reflected light from traveling back along the optical fiber. [66]
Terbium oxides are used in green phosphors in fluorescent lamps, color TV tubes, [10] and flat screen monitors. [67] Terbium, along with all other lanthanides except lanthanum and lutetium, is luminescent in the 3+ oxidation state. [68] The brilliant fluorescence allows terbium to be used as a probe in biochemistry, where it somewhat resembles calcium in its behavior. Terbium "green" phosphors (which fluoresce a brilliant lemon-yellow) are combined with divalent europium blue phosphors and trivalent europium red phosphors to provide trichromatic lighting, which is by far the largest consumer of the world's terbium supply. Trichromatic lighting provides much higher light output for a given amount of electrical energy than does incandescent lighting. [10]
In 2023, terbium compounds were used to create a lattice with a single iron atom that was then examined by synchrotron x-ray beam. This was the first successful attempt to characterize a single atom at sub-atomic levels. [69]
Terbium, along with many of the other rare earth elements, is poorly studied in terms of its toxicology and environmental impacts. Few health-based guidance values for safe exposure to terbium are available. [70] No values are established in the United States by the Occupational Safety and Health Administration or American Conference of Governmental Industrial Hygienists at which terbium exposure becomes hazardous, and it is not considered a hazardous substance under the Globally Harmonized System of Classification and Labelling of Chemicals. [71]
Reviews of the toxicity of the rare earth elements place terbium and its compounds as "of low to moderately toxicity", remarking on the lack of detailed studies on their hazards [72] and the lack of market demand forestalling evidence of toxicity. [73]
Some studies demonstrate environmental accumulation of terbium as hazardous to fish and plants. [74] [75] High exposures of terbium may enhance the toxicity of other substances causing endocytosis in plant cells. [76]
Dysprosium is a chemical element; it has symbol Dy and atomic number 66. It is a rare-earth element in the lanthanide series with a metallic silver luster. Dysprosium is never found in nature as a free element, though, like other lanthanides, it is found in various minerals, such as xenotime. Naturally occurring dysprosium is composed of seven isotopes, the most abundant of which is 164Dy.
Europium is a chemical element; it has symbol Eu and atomic number 63. Europium is a silvery-white metal of the lanthanide series that reacts readily with air to form a dark oxide coating. It is the most chemically reactive, least dense, and softest of the lanthanide elements. It is soft enough to be cut with a knife. Europium was isolated in 1901 and named after the continent of Europe. Europium usually assumes the oxidation state +3, like other members of the lanthanide series, but compounds having oxidation state +2 are also common. All europium compounds with oxidation state +2 are slightly reducing. Europium has no significant biological role and is relatively non-toxic compared to other heavy metals. Most applications of europium exploit the phosphorescence of europium compounds. Europium is one of the rarest of the rare-earth elements on Earth.
Erbium is a chemical element; it has symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element, originally found in the gadolinite mine in Ytterby, Sweden, which is the source of the element's name.
Gadolinium is a chemical element; it has symbol Gd and atomic number 64. Gadolinium is a silvery-white metal when oxidation is removed. It is a malleable and ductile rare-earth element. Gadolinium reacts with atmospheric oxygen or moisture slowly to form a black coating. Gadolinium below its Curie point of 20 °C (68 °F) is ferromagnetic, with an attraction to a magnetic field higher than that of nickel. Above this temperature it is the most paramagnetic element. It is found in nature only in an oxidized form. When separated, it usually has impurities of the other rare earths because of their similar chemical properties.
Holmium is a chemical element; it has symbol Ho and atomic number 67. It is a rare-earth element and the eleventh member of the lanthanide series. It is a relatively soft, silvery, fairly corrosion-resistant and malleable metal. Like many other lanthanides, holmium is too reactive to be found in native form, as pure holmium slowly forms a yellowish oxide coating when exposed to air. When isolated, holmium is relatively stable in dry air at room temperature. However, it reacts with water and corrodes readily, and also burns in air when heated.
Lanthanum is a chemical element with the symbol La and the atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between lanthanum and lutetium in the periodic table, of which lanthanum is the first and the prototype. Lanthanum is traditionally counted among the rare earth elements. Like most other rare earth elements, its usual oxidation state is +3, although some compounds are known with an oxidation state of +2. Lanthanum has no biological role in humans but is essential to some bacteria. It is not particularly toxic to humans but does show some antimicrobial activity.
Lutetium is a chemical element; it has symbol Lu and atomic number 71. It is a silvery white metal, which resists corrosion in dry air, but not in moist air. Lutetium is the last element in the lanthanide series, and it is traditionally counted among the rare earth elements; it can also be classified as the first element of the 6th-period transition metals.
The lanthanide or lanthanoid series of chemical elements comprises at least the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. In the periodic table, they fill the 4f orbitals. Lutetium is also sometimes considered a lanthanide, despite being a d-block element and a transition metal.
Neodymium is a chemical element; it has symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarnishes in air and moisture. When oxidized, neodymium reacts quickly producing pink, purple/blue and yellow compounds in the +2, +3 and +4 oxidation states. It is generally regarded as having one of the most complex spectra of the elements. Neodymium was discovered in 1885 by the Austrian chemist Carl Auer von Welsbach, who also discovered praseodymium. It is present in significant quantities in the minerals monazite and bastnäsite. Neodymium is not found naturally in metallic form or unmixed with other lanthanides, and it is usually refined for general use. Neodymium is fairly common—about as common as cobalt, nickel, or copper—and is widely distributed in the Earth's crust. Most of the world's commercial neodymium is mined in China, as is the case with many other rare-earth metals.
Samarium is a chemical element; it has symbol Sm and atomic number 62. It is a moderately hard silvery metal that slowly oxidizes in air. Being a typical member of the lanthanide series, samarium usually has the oxidation state +3. Compounds of samarium(II) are also known, most notably the monoxide SmO, monochalcogenides SmS, SmSe and SmTe, as well as samarium(II) iodide.
Thulium is a chemical element; it has symbol Tm and atomic number 69. It is the thirteenth element in the lanthanide series of metals. It is the second-least abundant lanthanide in the Earth's crust, after radioactively unstable promethium. It is an easily workable metal with a bright silvery-gray luster. It is fairly soft and slowly tarnishes in air. Despite its high price and rarity, thulium is used as a dopant in solid-state lasers, and as the radiation source in some portable X-ray devices. It has no significant biological role and is not particularly toxic.
Ytterbium is a chemical element; it has symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. Like the other lanthanides, its most common oxidation state is +3, as in its oxide, halides, and other compounds. In aqueous solution, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density, melting point and boiling point are much lower than those of most other lanthanides.
The mineral bastnäsite (or bastnaesite) is one of a family of three carbonate-fluoride minerals, which includes bastnäsite-(Ce) with a formula of (Ce, La)CO3F, bastnäsite-(La) with a formula of (La, Ce)CO3F, and bastnäsite-(Y) with a formula of (Y, Ce)CO3F. Some of the bastnäsites contain OH− instead of F− and receive the name of hydroxylbastnasite. Most bastnäsite is bastnäsite-(Ce), and cerium is by far the most common of the rare earths in this class of minerals. Bastnäsite and the phosphate mineral monazite are the two largest sources of cerium and other rare-earth elements.
Praseodymium is a chemical element; it has symbol Pr and the atomic number 59. It is the third member of the lanthanide series and is considered one of the rare-earth metals. It is a soft, silvery, malleable and ductile metal, valued for its magnetic, electrical, chemical, and optical properties. It is too reactive to be found in native form, and pure praseodymium metal slowly develops a green oxide coating when exposed to air.
Yttrium is a chemical element; it has symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". Yttrium is almost always found in combination with lanthanide elements in rare-earth minerals and is never found in nature as a free element. 89Y is the only stable isotope and the only isotope found in the Earth's crust.
Cerium is a chemical element; it has symbol Ce and atomic number 58. It is a soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it often shows the oxidation state of +3 characteristic of the series, it also has a stable +4 state that does not oxidize water. It is considered one of the rare-earth elements. Cerium has no known biological role in humans but is not particularly toxic, except with intense or continued exposure.
Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.
Terbium compounds are compounds formed by the lanthanide metal terbium (Tb). Terbium generally exhibits the +3 oxidation state in these compounds, such as in TbCl3, Tb(NO3)3 and Tb(CH3COO)3. Compounds with terbium in the +4 oxidation state are also known, such as TbO2 and BaTbF6. Terbium can also form compounds in the 0, +1 and +2 oxidation states.
Cerium compounds are compounds containing the element cerium (Ce), a lanthanide. Cerium exists in two main oxidation states, Ce(III) and Ce(IV). This pair of adjacent oxidation states dominates several aspects of the chemistry of this element. Cerium(IV) aqueous solutions may be prepared by reacting cerium(III) solutions with the strong oxidizing agents peroxodisulfate or bismuthate. The value of E⦵(Ce4+/Ce3+) varies widely depending on conditions due to the relative ease of complexation and hydrolysis with various anions, although +1.72 V is representative. Cerium is the only lanthanide which has important aqueous and coordination chemistry in the +4 oxidation state.
Lanthanide compounds are compounds formed by the 15 elements classed as lanthanides. The lanthanides are generally trivalent, although some, such as cerium and europium, are capable of forming compounds in other oxidation states.